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Overview
This chapter summarizes the new features available in SAS/ETS 13.2 high-performance procedures.

If you have used SAS/ETS high-performance procedures in the past, you can review this chapter to learn
about the new features that have been added. When you see a new feature that might be useful for your work,
turn to the appropriate chapter to read about the feature in detail.

Highlights of Changes and Enhancements
New features have been added to the following SAS/ETS high-performance procedures:

• HPCOUNTREG procedure

• HPSEVERITY procedure

HPCOUNTREG Procedure
The following features have been added to the HPCOUNTREG procedure:

• Support for panel data analysis has been added. You specify a panel data model by providing a
GROUPID= variable in the PROC HPCOUNTREG statement and by providing the ERRORCOMP=
option in your MODEL statement to indicate the type of error components model to apply.
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HPSEVERITY Procedure
The following features have been added to the HPSEVERITY procedure:

• The HPSEVERITY procedure now supports the CLASS statement and specification of a wide va-
riety of regression effects in the SCALEMODEL statement. These include singleton continuous
effects, polynomial continuous effects, main CLASS variable effects, interaction effects, nested ef-
fects, continuous-by-class effects, continuous-nesting-class effects, and a general combination of the
preceding effects.

Note that when you specify regression effects that contain interactions or CLASS variables, the
OUTSCORELIB statement and the INEST= option are not supported.

• The HPSEVERITY procedure now supports a new method of saving the estimation results and using
them for parameter initialization. The new OUTSTORE= option creates an item store, which is a
binary file in a format that is specific to the SEVERITY and HPSEVERITY procedures. You can
use an OUTSTORE= item store that is created in one PROC SEVERITY or PROC HPSEVERITY
step to initialize the parameters in a subsequent PROC SEVERITY or PROC HPSEVERITY step by
specifying the new INSTORE= option. These options are required if you want to save and initialize a
scale regression model that contains interaction effects or effects with CLASS variables.

Both the OUTSTORE= and INSTORE= options are experimental in this release of the HPSEVERITY
procedure.

• The OUTSCORELIB statement to create scoring functions, which was introduced in the previous
version of PROC HPSEVERITY, is now at production status. Note that the scoring functions are not
supported when you specify a scale regression model that contains interaction effects or effects with
CLASS variables.

• The HPSEVERITY procedure now supports the options that were previously available only in the
SEVERITY procedure. These include the following:

– You can specify the PLOTS= option in the single-machine mode of execution. You can request
the individual and comparative plots of cumulative distribution functions (CDF) and probability
density functions (PDF) of all candidate distributions. You can also request the P-P and Q-Q
plots for individual candidate distributions. The individual CDF plots also contain the upper and
lower confidence limits of the empirical distribution function (EDF) estimates. You can use the
new EDFALPHA= option to control the plotted EDF confidence limits.

– You can specify the OUTCDF= option to create a SAS data set in the single-machine mode of
execution. This data set contains the EDF estimates and CDF estimates of all distributions that
do not fail to converge.

– You can specify the PROBOBSERVED= suboption of the LEFTTRUNCATED= option in the
LOSS statement. This option enables you to specify the probability of observability, which is
defined as the probability that the underlying severity event is observed (and recorded) for the
specified left-threshold value.

– The set of options that you can specify in the NLOPTIONS statement is now identical to the set
of options that are available in PROC SEVERITY.
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Overview of SAS/ETS High-Performance Procedures
SAS/ETS high-performance procedures provide econometric modeling tools that have been specially devel-
oped to take advantage of parallel processing in both multithreaded single-machine mode and distributed
multiple-machine mode. Econometric modeling methods include regression for count data, models for the
severity of losses or other events, and regression models for qualitative and limited dependent variables.

In addition to the high-performance econometric procedures described in this book, SAS/ETS includes
high-performance utility procedures, which are described in Base SAS Procedures Guide: High-Performance
Procedures. You can run all these procedures in single-machine mode without licensing SAS High-
Performance Econometrics. However, to run these procedures in distributed mode, you must license
SAS High-Performance Econometrics.

About This Book
This book assumes that you are familiar with Base SAS software and with the books SAS Language Reference:
Concepts and Base SAS Procedures Guide. It also assumes that you are familiar with basic SAS System
concepts, such as using the DATA step to create SAS data sets and using Base SAS procedures (such as, the
PRINT and SORT procedures) to manipulate SAS data sets.

Chapter Organization
This book is organized as follows:

Chapter 2, this chapter, provides an overview of SAS/ETS high-performance procedures.
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Chapter 3, “Shared Concepts and Topics,” describes the modes in which SAS/ETS high-performance
procedures can execute.

Subsequent chapters describe the individual procedures. These chapters appear in alphabetical order by
procedure name. Each chapter is organized as follows:

• The “Overview” section provides a brief description of the analysis provided by the procedure.

• The “Getting Started” section provides a quick introduction to the procedure through a simple example.

• The “Syntax” section describes the SAS statements and options that control the procedure.

• The “Details” section discusses methodology and other topics, such as ODS tables.

• The “Examples” section contains examples that use the procedure.

• The “References” section contains references for the methodology.

Typographical Conventions
This book uses several type styles for presenting information. The following list explains the meaning of the
typographical conventions used in this book:

roman is the standard type style used for most text.

UPPERCASE ROMAN is used for SAS statements, options, and other SAS language elements when
they appear in the text. However, you can enter these elements in your own SAS
programs in lowercase, uppercase, or a mixture of the two.

UPPERCASE BOLD is used in the “Syntax” sections’ initial lists of SAS statements and options.

oblique is used in the syntax definitions and in text to represent arguments for which you
supply a value.

VariableName is used for the names of variables and data sets when they appear in the text.

bold is used to for matrices and vectors.

italic is used for terms that are defined in the text, for emphasis, and for references to
publications.

monospace is used for example code. In most cases, this book uses lowercase type for SAS
code.
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Options Used in Examples
The HTMLBLUE style is used to create the graphs and the HTML tables that appear in the online documen-
tation. The PEARLJ style is used to create the PDF tables that appear in the documentation. A style template
controls stylistic elements such as colors, fonts, and presentation attributes. You can specify a style template
in an ODS destination statement as follows:

ods html style=HTMLBlue;
. . .
ods html close;

ods pdf style=PearlJ;
. . .
ods pdf close;

Most of the PDF tables are produced by using the following SAS System option:

options papersize=(6.5in 9in);

If you run the examples, you might get slightly different output. This is a function of the SAS System options
that are used and the precision that your computer uses for floating-point calculations.

Online Documentation
This documentation is available online with the SAS System. To access documentation for the SAS/ETS
high-performance procedures from the SAS windowing environment, select Help from the main menu and
then select SAS Help and Documentation. On the Contents tab, expand the SAS Products, SAS/ETS,
and SAS/ETS User’s Guide: High-Performance Procedures items. Then expand chapters and click on
sections. You can search the documentation by using the Search tab.

You can also access the documentation by going to http://support.sas.com/documentation.

SAS Technical Support Services
The SAS Technical Support staff is available to respond to problems and answer technical questions re-
garding the use of high-performance procedures. Go to http://support.sas.com/techsup for more
information.

http://support.sas.com/documentation
http://support.sas.com/techsup
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Overview
This chapter describes the modes of execution in which SAS high-performance analytical procedures can
execute. If you have SAS/ETS installed, you can run any procedure in this book on a single machine.
However, to run procedures in this book in distributed mode, you must also have SAS High-Performance
Econometrics software installed. For more information about these modes, see the next section.

This chapter provides details of how you can control the modes of execution and includes the syntax for the
PERFORMANCE statement, which is common to all high-performance analytical procedures.

Processing Modes

Single-Machine Mode
Single-machine mode is a computing model in which multiple processors or multiple cores are controlled
by a single operating system and can access shared resources, such as disks and memory. In this book,
single-machine mode refers to an application running multiple concurrent threads on a multicore machine
in order to take advantage of parallel execution on multiple processing units. More simply, single-machine
mode for high-performance analytical procedures means multithreading on the client machine.

All high-performance analytical procedures are capable of running in single-machine mode, and this is the
default mode when a procedure runs on the client machine. The procedure uses the number of CPUs (cores)
on the machine to determine the number of concurrent threads. High-performance analytical procedures use
different methods to map core count to the number of concurrent threads, depending on the analytic task.
Using one thread per core is not uncommon for the procedures that implement data-parallel algorithms.

Distributed Mode
Distributed mode is a computing model in which several nodes in a distributed computing environment
participate in the calculations. In this book, the distributed mode of a high-performance analytical procedure
refers to the procedure performing the analytics on an appliance that consists of a cluster of nodes. This
appliance can be one of the following:

• a database management system (DBMS) appliance on which the SAS High-Performance Analytics
infrastructure is also installed

• a cluster of nodes that have the SAS High-Performance Analytics infrastructure installed but no DBMS
software installed
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Controlling the Execution Mode with Environment Variables and
Performance Statement Options
You control the execution mode by using environment variables or by specifying options in the PERFOR-
MANCE statement in high-performance analytical procedures, or by a combination of these methods.

The important environment variables follow:

• grid host identifies the domain name system (DNS) or IP address of the appliance node to which the
SAS High-Performance Econometrics software connects to run in distributed mode.

• installation location identifies the directory where the SAS High-Performance Econometrics software
is installed on the appliance.

You can set an environment variable directly from the SAS program by using the OPTION SET= command.
For example, the following statements define the grid host and the location where the SAS High-Performance
software is installed on the appliance:

option set=GRIDHOST ="hpa.sas.com";
option set=GRIDINSTALLLOC="/opt/TKGrid";

Alternatively, you can set the parameters in the PERFORMANCE statement in high-performance analytical
procedures. For example:

performance host ="hpa.sas.com"
install ="/opt/TKGrid";

A specification in the PERFORMANCE statement overrides a specification of an environment variable
without resetting its value. An environment variable that you set in the SAS session by using an OPTION
SET= command remains in effect until it is modified or until the SAS session terminates.

The key variable that determines whether a high-performance analytical procedure executes in single-machine
or distributed mode is the grid host. The installation location is needed to ensure that a connection to the grid
host can be made, given that a host is specified. This book assumes that the installation location has been set
by your system administrator.

The following sets of SAS statements are functionally equivalent:

proc hpreduce;
reduce unsupervised x:;
performance host="hpa.sas.com";

run;

option set=GRIDHOST="hpa.sas.com";
proc hpreduce;

reduce unsupervised x:;
run;
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Determining Single-Machine Mode or Distributed Mode
High-performance analytical procedures use the following rules to determine whether they run in single-
machine mode or distributed mode:

• If a grid host is not specified, the analysis is carried out in single-machine mode on the client machine
that runs the SAS session.

• If a grid host is specified, the behavior depends on whether the execution is alongside the database
or alongside HDFS. If the data are local to the client (that is, not stored in the distributed database or
HDFS on the appliance), you need to use the NODES= option in the PERFORMANCE statement
to specify the number of nodes on the appliance or cluster that you want to engage in the analysis.
If the procedure executes alongside the database or alongside HDFS, you do not need to specify the
NODES= option.

The following example shows single-machine and client-data distributed configurations for a data set of
100,000 observations that are simulated from a logistic regression model. The following DATA step generates
the data:

data simData;
array _a{8} _temporary_ (0,0,0,1,0,1,1,1);
array _b{8} _temporary_ (0,0,1,0,1,0,1,1);
array _c{8} _temporary_ (0,1,0,0,1,1,0,1);
do obsno=1 to 100000;

x = rantbl(1,0.28,0.18,0.14,0.14,0.03,0.09,0.08,0.06);
a = _a{x};
b = _b{x};
c = _c{x};
x1 = int(ranuni(1)*400);
x2 = 52 + ranuni(1)*38;
x3 = ranuni(1)*12;
lp = 6. -0.015*(1-a) + 0.7*(1-b) + 0.6*(1-c) + 0.02*x1 -0.05*x2 - 0.1*x3;
y = ranbin(1,1,(1/(1+exp(lp))));
output;

end;
drop x lp;

run;

The following statements run PROC HPLOGISTIC to fit a logistic regression model:

proc hplogistic data=simData;
class a b c;
model y = a b c x1 x2 x3;

run;

Figure 3.1 shows the results from the analysis.
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Figure 3.1 Results from Logistic Regression in Single-Machine Mode

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Data Access Information

Data Engine Role Path

WORK.SIMDATA V9 Input On Client

Model Information

Data Source WORK.SIMDATA

Response Variable y

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.7011 0.2539 Infty 22.45 <.0001

a 0 -0.01020 0.06627 Infty -0.15 0.8777

a 1 0 . . . .

b 0 0.7124 0.06558 Infty 10.86 <.0001

b 1 0 . . . .

c 0 0.8036 0.06456 Infty 12.45 <.0001

c 1 0 . . . .

x1 0.01975 0.000614 Infty 32.15 <.0001

x2 -0.04728 0.003098 Infty -15.26 <.0001

x3 -0.1017 0.009470 Infty -10.74 <.0001

The entries in the “Performance Information” table show that the HPLOGISTIC procedure runs in single-
machine mode and uses four threads, which are chosen according to the number of CPUs on the client
machine. You can force a certain number of threads on any machine that is involved in the computations
by specifying the NTHREADS option in the PERFORMANCE statement. Another indication of execution
on the client is the following message, which is issued in the SAS log by all high-performance analytical
procedures:

NOTE: The HPLOGISTIC procedure is executing in single-machine mode.

The following statements use 10 nodes (in distributed mode) to analyze the data on the appliance; results
appear in Figure 3.2:

proc hplogistic data=simData;
class a b c;
model y = a b c x1 x2 x3;
performance host="hpa.sas.com" nodes=10;

run;
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Figure 3.2 Results from Logistic Regression in Distributed Mode

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node hpa.sas.com

Execution Mode Distributed

Number of Compute Nodes 10

Number of Threads per Node 24

The specification of a host causes the “Performance Information” table to display the name of the host node
of the appliance. The “Performance Information” table also indicates that the calculations were performed in
a distributed environment on the appliance. Twenty-four threads on each of 10 nodes were used to perform
the calculations—for a total of 240 threads.

Another indication of distributed execution on the appliance is the following message, which is issued in the
SAS log by all high-performance analytical procedures:

NOTE: The HPLOGISTIC procedure is executing in the distributed
computing environment with 10 worker nodes.

You can override the presence of a grid host and force the computations into single-machine mode by
specifying the NODES=0 option in the PERFORMANCE statement:

proc hplogistic data=simData;
class a b c;
model y = a b c x1 x2 x3;
performance host="hpa.sas.com" nodes=0;

run;

Figure 3.3 shows the “Performance Information” table. The numeric results are not reproduced here, but they
agree with the previous analyses, which are shown in Figure 3.1 and Figure 3.2.

Figure 3.3 Single-Machine Mode Despite Host Specification

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Execution Mode Single-Machine

Number of Threads 4

Data Access Information

Data Engine Role Path

WORK.SIMDATA V9 Input On Client

The “Performance Information” table indicates that the HPLOGISTIC procedure executes in single-machine
mode on the client. This information is also reported in the following message, which is issued in the SAS
log:
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NOTE: The HPLOGISTIC procedure is executing in single-machine mode.

In the analysis shown previously in Figure 3.2, the data set Work.simData is local to the client, and the
HPLOGISTIC procedure distributed the data to 10 nodes on the appliance. The High-Performance Analytics
infrastructure does not keep these data on the appliance. When the procedure terminates, the in-memory
representation of the input data on the appliance is freed.

When the input data set is large, the time that is spent sending client-side data to the appliance might dominate
the execution time. In practice, transfer speeds are usually lower than the theoretical limits of the network
connection or disk I/O rates. At a transfer rate of 40 megabytes per second, sending a 10-gigabyte data set
to the appliance requires more than four minutes. If analytic execution time is in the range of seconds, the
“performance” of the process is dominated by data movement.

The alongside-the-database execution model, unique to high-performance analytical procedures, enables you
to read and write data in distributed form from the database that is installed on the appliance.

Data Access Modes

Single-Machine Data Access Mode
When high-performance analytical procedures run in single-machine mode, they access data in the same
way as traditional SAS procedures. They use Base SAS to access input and output SAS data sets on the
client machine, and they use the relevant SAS/ACCESS interface to bring data from other sources, such as
third-party databases, Hadoop, and SAS LASR servers, to the client.

Distributed Data Access Mode
When high-performance analytical procedures run in distributed mode, input data must be brought to the
computation that is performed on the nodes of the grid, and output data must be sent from the computational
nodes. This can be accomplished in several ways:

• Client-data (local-data) mode: The input and output data for the analytic task are stored on the client
machine where the high-performance procedure is invoked. When the procedure runs, the SAS High-
Performance Analytics infrastructure sends input data from the client to the distributed computing
environment and sends output data from the distributed computing environment to the client.

• Parallel symmetric mode: Input and output data are stored on the same nodes that are used for the
distributed computation, and the data move in parallel from the data store to the computational nodes
without crossing node boundaries. Parallel symmetric mode is available with the following distributed
data sources:

– Data in Greenplum or Teradata databases that are collocated with the computational nodes. This
access mode is also called alongside-the-database mode. For more information, see the section
“Alongside-the-Database Execution” on page 18.
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– Data in SASHDAT format in the Hadoop Distributed File System (HDFS) that is collocated
with the computational nodes. This access mode is also called alongside-HDFS mode. For more
information, see the section “Alongside-HDFS Execution by Using the SASHDAT Engine” on
page 29.

– Data in a SAS LASR Analytic Server that is collocated with the computational nodes. This access
mode is also called alongside-LASR mode. For more information, see the section “Running
High-Performance Analytical Procedures Alongside a SAS LASR Analytic Server in Distributed
Mode” on page 20.

• Parallel asymmetric mode: The primary reason for providing this mode is to enable you to manage and
house data on appliances (the data appliances) and to run high-performance analytical procedures on a
different appliance (the computing appliance). The high-performance analytical procedures run in a
SAS process on the computing appliance. For each data source that is accessed in parallel asymmetric
mode, a SAS Embedded Process must run on the associated data appliance. Data are requested by a
SAS data feeder that runs on the computing appliance and communicates with the SAS Embedded
Process on the data appliance. The SAS Embedded Process transfers the data in parallel to the SAS
data feeder that runs on each of the nodes of the computing appliance. This mode is called asymmetric
mode because the number of nodes on the data appliance does not need to match the number of nodes
on the computing appliance. Parallel asymmetric mode is supported for data in Teradata, Greenplum,
and Oracle databases and for data in HDFS and SAP HANA. In these cases, the parallel asymmetric
access is somewhat loosely described as being asymmetric alongside access, even though the data
storage and computation can occur on different appliances. For more information, see the section
“Running High-Performance Analytical Procedures in Asymmetric Mode” on page 23.

• Through-the-client mode: When data can be accessed through a SAS/ACCESS interface but the data
reside in a file system or in a distributed data source on which a SAS Embedded Process is not running,
those data cannot be accessed in parallel in either symmetric or asymmetric mode. The SAS/ACCESS
interface is used to transfer input data from the data source to the client machine on which the high-
performance procedure is invoked, and the data are then sent to the distributed computing environment
by the SAS High-Performance Analytics infrastructure. The data path is reversed for output data. This
mode of data access is referred to as through-the-client access.

Determining the Data Access Mode
High-performance analytical procedures determine the data access mode individually for each data set that
is used in the analysis. When high-performance analytical procedures run in distributed mode, parallel
symmetric or parallel asymmetric mode is used whenever possible. There are two reasons why parallel
access might not be possible. The first reason is that for a particular data set, the required SAS Embedded
Process is not installed on the appliance that houses the data. In such cases, access to those data reverts to
through-the-client access, and a note like the following is reported in the SAS log:

NOTE: The data MYLIB.MYDATA are being routed through the client because a
SAS Embedded Process is not running on the associated data server.

The second reason why parallel data access might not be possible for a particular data set is that the required
driver software might not be installed on the compute nodes. In this case, the required data feeder that
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moves the data from the compute nodes to the data source cannot be successfully loaded, and a note like the
following is reported in the SAS log:

NOTE: The data MYLIB.MYDATA are being routed through the client because
the ORACLE data feeder could not be loaded on the specified grid host.

For distributed data in SASHDAT format in HDFS or data in a SAS LASR Analytic Server, parallel symmetric
access is used when the data nodes and compute nodes are collocated on the same appliance. For data in a
LASR Analytic Server that cannot be accessed in parallel symmetric mode, through-the-client mode is used.
Through-the-client access is not supported for data in SASHDAT format in HDFS.

For data in Greenplum databases, parallel symmetric access is used if the compute nodes and the data nodes
are collocated on the same appliance and you do not specify the NODES=n option in a PERFORMANCE
statement. In this case, the number of nodes that are used is determined by the number of nodes across which
the data are distributed. If you specify NODES=n, then parallel asymmetric access is used.

For data in Teradata databases, parallel asymmetric mode is used by default. If your data and computation
are collocated on the same appliance and you want to use parallel symmetric mode, then you need to
specify GRIDMODE=SYM in the PERFORMANCE statement or you need to set the GRIDMODE=’SYM’
environment variable by using an OPTION SET statement.

High-performance analytical procedures produce a “Data Access Information” table that shows you how
each data set that is used in the analysis is accessed. The following statements provide an example in which
PROC HPDS2 is used to copy a distributed data set named Neuralgia (which is stored in SASHDAT format
in HDFS) to a SAS data set on the client machine:

libname hdatlib sashdat
host='hpa.sas.com';
hdfs_path="/user/hps";

proc hpds2 data=hdatlib.neuralgia out=neuralgia;
performance host='hpa.sas.com';
data DS2GTF.out;

method run();
set DS2GTF.in;

end;
enddata;

run;

Figure 3.4 shows the output that PROC HPDS2 produces. The “Performance Information” table shows that
PROC HPDS2 ran in distributed mode on a 13-node grid. The “Data Access Information” table shows that
the input data were accessed in parallel symmetric mode and the output data set was sent to the client, where
the V9 (base) engine stored it as a SAS data set in the Work directory.

Figure 3.4 Performance Information and Data Access Information Tables

The HPDS2 ProcedureThe HPDS2 Procedure

Performance Information

Host Node hpa.sas.com

Execution Mode Distributed

Number of Compute Nodes 13

Number of Threads per Node 24
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Figure 3.4 continued

Data Access Information

Data Engine Role Path

HDATLIB.NEURALGIA SASHDAT Input Parallel, Symmetric

WORK.NEURALGIA V9 Output To Client

Alongside-the-Database Execution
High-performance analytical procedures interface with the distributed database management system (DBMS)
on the appliance in a unique way. If the input data are stored in the DBMS and the grid host is the appliance
that houses the data, high-performance analytical procedures create a distributed computing environment in
which an analytic process is collocated with the nodes of the DBMS. Data then pass from the DBMS to the
analytic process on each node. Instead of moving across the network and possibly back to the client machine,
the data pass locally between the processes on each node of the appliance.

Because the analytic processes on the appliance are separate from the database processes, the technique is
referred to as alongside-the-database execution in contrast to in-database execution, where the analytic code
executes in the database process.

In general, when you have a large amount of input data, you can achieve the best performance from
high-performance analytical procedures if execution is alongside the database.

Before you can run alongside the database, you must distribute the data to the appliance. The following
statements use the HPDS2 procedure to distribute the data set Work.simData into the mydb database on the
hpa.sas.com appliance. In this example, the appliance houses a Greenplum database.

option set=GRIDHOST="green.sas.com";
libname applianc greenplm

server ="green.sas.com"
user =XXXXXX
password=YYYYY
database=mydb;

proc datasets lib=applianc nolist; delete simData;
proc hpds2 data=simData

out =applianc.simData(distributed_by='distributed randomly');
performance commit=10000 nodes=all;
data DS2GTF.out;

method run();
set DS2GTF.in;

end;
enddata;

run;

If the output table applianc.simData exists, the DATASETS procedure removes the table from the Greenplum
database because a DBMS does not usually support replacement operations on tables.
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Note that the libref for the output table points to the appliance. The data set option informs the HPDS2
procedure to distribute the records randomly among the data segments of the appliance. The statements that
follow the PERFORMANCE statement are the DS2 program that copies the input data to the output data
without further transformations.

Because you loaded the data into a database on the appliance, you can use the following HPLOGISTIC
statements to perform the analysis on the appliance in the alongside-the-database mode. These statements
are almost identical to the first PROC HPLOGISTIC example in a previous section, which executed in
single-machine mode.

proc hplogistic data=applianc.simData;
class a b c;
model y = a b c x1 x2 x3;

run;

The subtle differences are as follows:

• The grid host environment variable that you specified in an OPTION SET= command is still in effect.

• The DATA= option in the high-performance analytical procedure uses a libref that identifies the data
source as being housed on the appliance. This libref was specified in a prior LIBNAME statement.

Figure 3.5 shows the results from this analysis. The “Performance Information” table shows that the
execution was in distributed mode, and the “Data Access Information” table shows that the data were
accessed asymmetrically in parallel from the Greenplum database. The numeric results agree with the
previous analyses, which are shown in Figure 3.1 and Figure 3.2.

Figure 3.5 Alongside-the-Database Execution on Greenplum

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node green.sas.com

Execution Mode Distributed

Number of Compute Nodes 16

Number of Threads per Node 24

Data Access Information

Data Engine Role Path

APPLIANC.SIMDATAGREENPLM Input Parallel, Asymmetric

Model Information

Data Source APPLIANC.SIMDATA

Response Variable y

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging
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Figure 3.5 continued

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.7011 0.2539 Infty 22.45 <.0001

a 0 -0.01020 0.06627 Infty -0.15 0.8777

a 1 0 . . . .

b 0 0.7124 0.06558 Infty 10.86 <.0001

b 1 0 . . . .

c 0 0.8036 0.06456 Infty 12.45 <.0001

c 1 0 . . . .

x1 0.01975 0.000614 Infty 32.15 <.0001

x2 -0.04728 0.003098 Infty -15.26 <.0001

x3 -0.1017 0.009470 Infty -10.74 <.0001

Alongside-LASR Distributed Execution
You can execute high-performance analytical procedures in distributed mode alongside a SAS LASR Analytic
Server. When high-performance analytical procedures run in this mode, the data are preloaded in distributed
form in memory that is managed by a LASR Analytic Server. The data on the nodes of the appliance
are accessed in parallel in the process that runs the LASR Analytic Server, and they are transferred to the
process where the high-performance analytical procedure runs. In general, each high-performance analytical
procedure copies the data to memory that persists only while that procedure executes. Hence, when a
high-performance analytical procedure runs alongside a LASR Analytic Server, both the high-performance
analytical procedure and the LASR Analytic Server have a copy of the subset of the data that is used by the
high-performance analytical procedure. The advantage of running high-performance analytical procedures
alongside a LASR Analytic Server (as opposed to running alongside a DBMS table or alongside HDFS) is
that the initial transfer of data from the LASR Analytic Server to the high-performance analytical procedure
is a memory-to-memory operation that is faster than the disk-to-memory operation when the procedure runs
alongside a DBMS or HDFS. When the cost of preloading a table into a LASR Analytic Server is amortized
by multiple uses of these data in separate runs of high-performance analytical procedures, using the LASR
Analytic Server can result in improved performance.

Running High-Performance Analytical Procedures Alongside
a SAS LASR Analytic Server in Distributed Mode
This section provides an example of steps that you can use to start and load data into a SAS LASR Analytic
Server instance and then run high-performance analytical procedures alongside this LASR Analytic Server
instance.
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Starting a SAS LASR Analytic Server Instance
The following statements create a SAS LASR Analytic Server instance and load it with the simData data
set that is used in the preceding examples. The data that are loaded into the LASR Analytic Server persist
in memory across procedure boundaries until these data are explicitly deleted or until the server instance is
terminated.

proc lasr port=54545
data=simData
path="/tmp/";

performance host="hpa.sas.com" nodes=ALL;
run;

The PORT= option specifies a network port number to use. The PATH= option specifies the directory in
which the server and table signature files are to be stored. The specified directory must exist on each machine
in the cluster. The DATA= option specifies the name of a data set that is loaded into this LASR Analytic
Server instance. (You do not need to specify the DATA= option at this time because you can add tables to
the LASR Analytic Server instance at any stage of its life.) For more information about starting and using a
LASR Analytic Server, see the SAS LASR Analytic Server: Reference Guide.

The NODES=ALL option in the PERFORMANCE statement specifies that the LASR Analytic Server run
on all the nodes on the appliance. You can start a LASR Analytic Server on a subset of the nodes on an
appliance, but this might affect whether high-performance analytical procedures can run alongside the LASR
Analytic Server. For more information, see the section “Alongside-LASR Distributed Execution on a Subset
of the Appliance Nodes” on page 23.

Figure 3.6 shows the “Performance Information” and “Data Access Information” tables, which show that
the LASR procedure ran in distributed mode on 13 nodes and that the data were sent from the client to the
appliance.

Figure 3.6 Performance and Data Access Information

The LASR ProcedureThe LASR Procedure

Performance Information

Host Node hpa.sas.com

Execution Mode Distributed

Number of Compute Nodes 13

Data Access Information

Data Engine Role Path

WORK.SIMDATA V9 Input From Client

Associating a SAS Libref with the SAS LASR Analytic Server Instance
The following statements use a LIBNAME statement that associates a SAS libref (named MyLasr) with
tables on the server instance as follows:
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libname MyLasr sasiola port=54545 host="hpa.sas.com";

The SASIOLA option requests that the MyLasr libref use the SASIOLA engine, and the PORT= value
associates this libref with the appropriate server instance. For more information about creating a libref that
uses the SASIOLA engine, see the SAS LASR Analytic Server: Reference Guide.

Running a High-Performance Analytical Procedure Alongside the SAS
LASR Analytic Server Instance
You can use the MyLasr libref to specify the input data for high-performance analytical procedures. You can
also create output data sets in the SAS LASR Analytic Server instance by using this libref to request that the
output data set be held in memory by the server instance as follows:

proc hplogistic data=MyLasr.simData;
class a b c;
model y = a b c x1 x2 x3;
output out=MyLasr.simulateScores pred=PredictedProbabliity;

run;

Because you previously specified the GRIDHOST= environment variable and the input data are held in
distributed form in the associated server instance, this PROC HPLOGISTIC step runs in distributed mode
alongside the LASR Analytic Server, as indicated in the “Performance Information” table shown in Figure 3.7.

Figure 3.7 Performance and Data Access Information

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node hpa.sas.com

Execution Mode Distributed

Number of Compute Nodes 13

Number of Threads per Node 24

Data Access Information

Data Engine Role Path

MYLASR.SIMDATA SASIOLA Input Parallel, Symmetric

MYLASR.SIMULATESCORESSASIOLA Output Parallel, Symmetric

The “Data Access Information” table shows that both the input and output data were read and written,
respectively, in parallel symmetric mode.

The preceding OUTPUT statement creates an output table that is added to the LASR Analytic Server instance.
Output data sets do not have to be created in the same server instance that holds the input data. You can use a
different LASR Analytic Server instance to hold the output data set. However, in order for the output data to
be created in parallel symmetric mode, all the nodes that are used by the server instance that holds the input
data must also be used by the server instance that holds the output data.
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Terminating a SAS LASR Analytic Server Instance
You can continue to run high-performance analytical procedures and add and delete tables from the SAS
LASR Analytic Server instance until you terminate the server instance as follows:

proc lasr term port=54545;
run;

Alongside-LASR Distributed Execution on a Subset of the
Appliance Nodes
When you run PROC LASR to start a SAS LASR Analytic Server, you can specify the NODES= option in a
PERFORMANCE statement to control how many nodes the LASR Analytic Server executes on. Similarly,
a high-performance analytical procedure can execute on a subset of the nodes either because you specify
the NODES= option in a PERFORMANCE statement or because you run alongside a DBMS or HDFS
with an input data set that is distributed on a subset of the nodes on an appliance. In such situations, if a
high-performance analytical procedure uses nodes on which the LASR Analytic Server is not running, then
running alongside LASR is not supported. You can avoid this issue by specifying the NODES=ALL in the
PERFORMANCE statement when you use PROC LASR to start the LASR Analytic Server.

Running High-Performance Analytical Procedures in
Asymmetric Mode
This section provides examples of how you can run high-performance analytical procedures in asymmetric
mode. It also includes examples that run in symmetric mode to highlight differences between the modes. For
a description of asymmetric mode, see the section “Distributed Data Access Mode” on page 15.

Asymmetric mode is commonly used when the data appliance and the computing appliance are distinct
appliances. In order to be able to use an appliance as a data provider for high-performance analytical
procedures that run in asymmetric mode on another appliance, it is not necessary that SAS High-Performance
Econometrics be installed on the data appliance. However, it is essential that a SAS Embedded Process be
installed on the data appliance and that SAS High-Performance Econometrics be installed on the computing
appliance.

The following examples use a 24-node data appliance named “data_appliance.sas.com,” which houses a
Teradata DBMS and has a SAS Embedded Process installed. Because SAS High-Performance Econometrics
is also installed on this appliance, it can be used to run high-performance analytical procedures in both
symmetric and asymmetric modes.
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The following statements load the simData data set of the preceding sections onto the data appliance:

libname dataLib teradata
server ="tera2650"
user =XXXXXX
password=YYYYY
database=mydb;

data dataLib.simData;
set simData;

run;

NOTE: You can provision the appliance with data even if SAS High-Performance Econometrics software is
not installed on the appliance.

The following subsections show how you can run the HPLOGISTIC procedure symmetrically and asymmet-
rically on a single data appliance and asymmetrically on distinct data and computing appliances.

Running in Symmetric Mode
The following statements run the HPLOGISTIC procedure in symmetric mode on the data appliance:

proc hplogistic data=dataLib.simData;
class a b c;
model y = a b c x1 x2 x3;
performance host = "data_appliance.sas.com"

nodes = 10
gridmode = sym;

run;

Figure 3.8 shows the results of this analysis.

Figure 3.8 Alongside-the-Database Execution in Symmetric Mode on Teradata

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node data_appliance.sas.com

Execution Mode Distributed

Number of Compute Nodes 24

Number of Threads per Node 24

Data Access Information

Data Engine Role Path

DATALIB.simData TERADATA Input Parallel, Symmetric
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Figure 3.8 continued

Model Information

Data Source DATALIB.simData

Response Variable y

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.7011 0.2539 Infty 22.45 <.0001

a 0 -0.01020 0.06627 Infty -0.15 0.8777

a 1 0 . . . .

b 0 0.7124 0.06558 Infty 10.86 <.0001

b 1 0 . . . .

c 0 0.8036 0.06456 Infty 12.45 <.0001

c 1 0 . . . .

x1 0.01975 0.000614 Infty 32.15 <.0001

x2 -0.04728 0.003098 Infty -15.26 <.0001

x3 -0.1017 0.009470 Infty -10.74 <.0001

The “Performance Information” table shows that the execution occurs in symmetric mode on the 24 nodes of
the data appliance. In this case, the NODES=10 option in the PERFORMANCE statement is ignored because
the number of nodes that are used is determined by the number of nodes across which the data are distributed,
as indicated in the following warning message in the SAS log:

WARNING: The NODES=10 option in the PERFORMANCE statement is ignored because
you are running alongside the distributed data source
DATALIB.simData.DATA. The number of compute nodes is determined by the
configuration of the distributed DBMS.

Running in Asymmetric Mode on One Appliance
By default, the HPLOGISTIC procedure runs in asymmetric mode, as shown Figure 3.9, which is produced
by the following statements:

proc hplogistic data=dataLib.simData;
class a b c;
model y = a b c x1 x2 x3;
performance host = "data_appliance.sas.com"

nodes = 10;
run;
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Figure 3.9 Alongside-Teradata Execution in Asymmetric Mode

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node data_appliance.sas.com

Execution Mode Distributed

Number of Compute Nodes 10

Number of Threads per Node 24

Data Access Information

Data Engine Role Path

DATALIB.simData TERADATA Input Parallel, Asymmetric

The “Performance Information” table confirms that the NODES=10 option that you specified in the PER-
FORMANCE statement was honored, and the “Data Access Information” table shows that the data were
accessed in parallel asymmetric mode. The data were moved in parallel from the 24 nodes on which the data
were stored to the 10 nodes on which the execution occurred. The numeric results are not reproduced here,
but they agree with the previous analyses.

Running in Asymmetric Mode on Distinct Appliances
Usually, there is no advantage to executing high-performance analytical procedures in asymmetric mode
on one appliance, because data might have to be unnecessarily moved between nodes. The following
example demonstrates the more typical use of asymmetric mode. In this example, the specified grid host
“compute_appliance.sas.com” is a 142-node computing appliance that is different from the 24-node data
appliance “data_appliance.sas.com,” which houses the Teradata DBMS where the data reside.

The advantage of using different computing and data appliances is that the data appliance is not affected by
the execution of high-performance analytical procedures except during the initial parallel data transfer. A
potential disadvantage of this asymmetric mode of execution is that the performance can be limited by the
bandwidth with which data can be moved between the appliances. However, because this data movement
takes place in parallel from the nodes of the data appliance to the nodes of the computing appliance, this
potential performance bottleneck can be overcome with appropriately provisioned hardware. The following
statements show how this is done:

proc hplogistic data=dataLib.simData;
class a b c;
model y = a b c x1 x2 x3;
performance host = "compute_appliance.sas.com" nodes=30;

run;

Figure 3.10 shows the “Performance Information” and “Data Access Information” tables.
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Figure 3.10 Asymmetric Mode with Distinct Data and Computing Appliances

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node compute_appliance.sas.com

Execution Mode Distributed

Number of Compute Nodes 30

Number of Threads per Node 32

Data Access Information

Data Engine Role Path

DATALIB.simData TERADATA Input Parallel, Asymmetric

PROC HPLOGISTIC ran on 30 nodes of the computing appliance, even though the data were partitioned
across the 24 nodes of the data appliance. The numeric results are not reproduced here, but they agree with
the previous analyses shown in Figure 3.1 and Figure 3.2.

Every time you run a high-performance analytical procedure in asymmetric mode that uses different comput-
ing and data appliances, data are transferred between these appliances. If you plan to make repeated use of
the same data, then it might be advantageous to temporarily persist the data that you need on the computing
appliance. One way to persist the data is to store them as a table in a SAS LASR Analytic Server that runs on
the computing appliance. By running PROC LASR in asymmetric mode, you can load the data in parallel
from the data appliance nodes to the nodes on which the LASR Analytic Server runs on the computing
appliance. You can then use a LIBNAME statement that associates a SAS libref with tables on the LASR
Analytic Server. The following statements show how you do this:

proc lasr port=54345
data=dataLib.simData
path="/tmp/";

performance host ="compute_appliance.sas.com" nodes=30;
run;

libname MyLasr sasiola tag="dataLib" port=54345 host="compute_appliance.sas.com" ;

Figure 3.11 show the “Performance Information” and “Data Access Information” tables.

Figure 3.11 PROC LASR Running in Asymmetric Mode

The LASR ProcedureThe LASR Procedure

Performance Information

Host Node compute_appliance.sas.com

Execution Mode Distributed

Number of Compute Nodes 30

Data Access Information

Data Engine Role Path

DATALIB.simData TERADATA Input Parallel, Asymmetric

By default, all the nodes on the computing appliance would be used. However, because NODES=30 was
specified in the PERFORMANCE statement, PROC LASR ran on only 30 nodes of the computing appliance.
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The data were loaded asymmetrically in parallel from the 24 data appliance nodes to the 30 compute nodes
on which PROC LASR ran.

After the data are loaded into a LASR Analytic Server that runs on the computing appliance, you can run
high-performance analytical procedures alongside this LASR Analytic Server as shown by the following
statements:

proc hplogistic data=MyLasr.simData;
class a b c;
model y = a b c x1 x2 x3;
output out=MyLasr.myOutputData pred=myPred;
performance host = "compute_appliance.sas.com";

run;

The following note, which appears in the SAS log, confirms that the output data set is created successfully:

NOTE: The table DATALIB.MYOUTPUTDATA has been added to the LASR Analytic Server
with port 54345. The Libname is MYLASR.

You can use the dataLib libref that you used to load the data onto the data appliance to create an output data
set on the data appliance.

proc hplogistic data=MyLasr.simData;
class a b c;
model y = a b c x1 x2 x3;
output out=dataLib.myOutputData pred=myPred;
performance host = "compute_appliance.sas.com";

run;

The following note, which appears in the SAS log, confirms that the output data set is created successfully on
the data appliance:

NOTE: The data set DATALIB.myOutputData has 100000 observations and 1 variables.

When you run a high-performance analytical procedure on a computing appliance and either read data from
or write data to a different data appliance on which a SAS Embedded Process is running, the Read and Write
operations take place in parallel without any movement of data to and from the SAS client.

When you no longer need the data in the SAS LASR Analytic Server, you should terminate the server instance
as follows:

proc lasr term port=54345;
performance host="compute_appliance.sas.com";

run;

If you configured Hadoop on the computing appliance, then you can create output data tables that are stored
in the HDFS on the computing appliance. You can do this by using the SASHDAT engine as described in the
section “Alongside-HDFS Execution” on page 29.
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Alongside-HDFS Execution
Running high-performance analytical procedures alongside HDFS shares many features with running along-
side the database. You can execute high-performance analytical procedures alongside HDFS by using either
the SASHDAT engine or the Hadoop engine.

You use the SASHDAT engine to read and write data that are stored in HDFS in a proprietary SASHDAT
format. In SASHDAT format, metadata that describe the data in the Hadoop files are included with the
data. This enables you to access files in SASHDAT format without supplying any additional metadata.
Additionally, you can also use the SASHDAT engine to read data in CSV (comma-separated value) format,
but you need supply metadata that describe the contents of the CSV data. The SASHDAT engine provides
highly optimized access to data in HDFS that are stored in SASHDAT format.

The Hadoop engine reads data that are stored in various formats from HDFS and writes data to HDFS in
CSV format. This engine can use metadata that are stored in Hive, which is a data warehouse that supplies
metadata about data that are stored in Hadoop files. In addition, this engine can use metadata that you create
by using the HDMD procedure.

The following subsections provide details about using the SASHDAT and Hadoop engines to execute
high-performance analytical procedures alongside HDFS.

Alongside-HDFS Execution by Using the SASHDAT Engine
If the grid host is a cluster that houses data that have been distributed by using the SASHDAT engine, then
high-performance analytical procedures can analyze those data in the alongside-HDFS mode. The procedures
use the distributed computing environment in which an analytic process is collocated with the nodes of the
cluster. Data then pass from HDFS to the analytic process on each node of the cluster.

Before you can run a procedure alongside HDFS, you must distribute the data to the cluster. The following
statements use the SASHDAT engine to distribute to HDFS the simData data set that was used in the previous
two sections:

option set=GRIDHOST="hpa.sas.com";

libname hdatLib sashdat
path="/hps";

data hdatLib.simData (replace = yes) ;
set simData;

run;

In this example, the GRIDHOST is a cluster where the SAS Data in HDFS Engine is installed. If a data set that
is named simData already exists in the hps directory in HDFS, it is overwritten because the REPLACE=YES
data set option is specified. For more information about using this LIBNAME statement, see the section
“LIBNAME Statement for the SAS Data in HDFS Engine” in the SAS LASR Analytic Server: Reference
Guide.
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The following HPLOGISTIC procedure statements perform the analysis in alongside-HDFS mode. These
statements are almost identical to the PROC HPLOGISTIC example in the previous two sections, which
executed in single-machine mode and alongside-the-database distributed mode, respectively.

Figure 3.12 shows the “Performance Information” and “Data Access Information” tables. You see that the
procedure ran in distributed mode and that the input data were read in parallel symmetric mode. The numeric
results shown in Figure 3.13 agree with the previous analyses shown in Figure 3.1, Figure 3.2, and Figure 3.5.

Figure 3.12 Alongside-HDFS Execution Performance Information

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node hpa.sas.com

Execution Mode Distributed

Number of Compute Nodes 13

Number of Threads per Node 24

Data Access Information

Data Engine Role Path

HDATLIB.SIMDATA SASHDAT Input Parallel, Symmetric

Figure 3.13 Alongside-HDFS Execution Model Information

Model Information

Data Source HDATLIB.SIMDATA

Response Variable y

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.7011 0.2539 Infty 22.45 <.0001

a 0 -0.01020 0.06627 Infty -0.15 0.8777

a 1 0 . . . .

b 0 0.7124 0.06558 Infty 10.86 <.0001

b 1 0 . . . .

c 0 0.8036 0.06456 Infty 12.45 <.0001

c 1 0 . . . .

x1 0.01975 0.000614 Infty 32.15 <.0001

x2 -0.04728 0.003098 Infty -15.26 <.0001

x3 -0.1017 0.009470 Infty -10.74 <.0001
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Alongside-HDFS Execution by Using the Hadoop Engine
The following LIBNAME statement sets up a libref that you can use to access data that are stored in HDFS
and have metadata in Hive:

libname hdoopLib hadoop
server = "hpa.sas.com"
user = XXXXX
password = YYYYY
database = myDB
config = "demo.xml" ;

For more information about LIBNAME options available for the Hadoop engine, see the LIBNAME topic in
the Hadoop section of SAS/ACCESS for Relational Databases: Reference. The configuration file that you
specify in the CONFIG= option contains information that is needed to access the Hive server. It also contains
information that enables this configuration file to be used to access data in HDFS without using the Hive
server. This information can also be used to specify replication factors and block sizes that are used when the
engine writes data to HDFS.

The following DATA step uses the Hadoop engine to distribute to HDFS the simData data set that was used
in the previous sections. The engine creates metadata for the data set in Hive.

data hdoopLib.simData;
set simData;

run;

After you have loaded data or if you are accessing preexisting data in HDFS that have metadata in Hive,
you can access this data alongside HDFS by using high-performance analytical procedures. The following
HPLOGISTIC procedure statements perform the analysis in alongside-HDFS mode. These statements are
similar to the PROC HPLOGISTIC example in the previous sections.

proc hplogistic data=hdoopLib.simData;
class a b c;
model y = a b c x1 x2 x3;
performance host = "compute_appliance.sas.com";

run;

Figure 3.14 shows the “Performance Information” and “Data Access Information” tables. You see that
the procedure ran in distributed mode and that the input data were read in parallel asymmetric mode. The
numeric results shown in Figure 3.15 agree with the previous analyses.

Figure 3.14 Alongside-HDFS Execution by Using the Hadoop Engine

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node compute_appliance.sas.com

Execution Mode Distributed

Number of Compute Nodes 142

Number of Threads per Node 32
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Figure 3.14 continued

Data Access Information

Data Engine Role Path

GRIDLIB.SIMDATA HADOOP Input Parallel, Asymmetric

Figure 3.15 Alongside-HDFS Execution by Using the Hadoop Engine

Model Information

Data Source GRIDLIB.SIMDATA

Response Variable y

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

Intercept 5.7011 0.2539 Infty 22.45 <.0001

a 0 -0.01020 0.06627 Infty -0.15 0.8777

a 1 0 . . . .

b 0 0.7124 0.06558 Infty 10.86 <.0001

b 1 0 . . . .

c 0 0.8036 0.06456 Infty 12.45 <.0001

c 1 0 . . . .

x1 0.01975 0.000614 Infty 32.15 <.0001

x2 -0.04728 0.003098 Infty -15.26 <.0001

x3 -0.1017 0.009470 Infty -10.74 <.0001

The Hadoop engine also enables you to access tables in HDFS that are stored in various formats and that are
not registered in Hive. You can use the HDMD procedure to generate metadata for tables that are stored in
the following file formats:

• delimited text

• fixed-record length binary

• sequence files

• XML text

To read any other kind of file in Hadoop, you can write a custom file reader plug-in in Java for use with
PROC HDMD. For more information about LIBNAME options available for the Hadoop engine, see the
LIBNAME topic in the Hadoop section of SAS/ACCESS for Relational Databases: Reference.

The following example shows how you can use PROC HDMD to register metadata for CSV data independently
from Hive and then analyze these data by using high-performance analytical procedures. The CSV data in the
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table csvExample.csv is stored in HDFS in the directory /user/demo/data. Each record in this table consists
of the following fields, in the order shown and separated by commas.

1. a string of at most six characters

2. a numeric field with values of 0 or 1

3. a numeric field with real numbers

Suppose you want to fit a logistic regression model to these data, where the second field represents a target
variable named Success, the third field represents a regressor named Dose, and the first field represents a
classification variable named Group.

The first step is to use PROC HDMD to create metadata that are needed to interpret the table, as in the
following statements:

libname hdoopLib hadoop
server = "hpa.sas.com"
user = XXXXX
password = YYYYY
HDFS_PERMDIR = "/user/demo/data"
HDFS_METADIR = "/user/demo/meta"
config = "demo.xml"
DBCREATE_TABLE_EXTERNAL=YES;

proc hdmd name=hdoopLib.csvExample data_file='csvExample.csv'
format=delimited encoding=utf8 sep = ',';

column Group char(6);
column Success double;
column Dose double;

run;

The metadata that are created by PROC HDMD for this table are stored in the directory /user/demo/meta
that you specified in the HDFS_METADIR = option in the preceding LIBNAME statement. After you create
the metadata, you can execute high-performance analytical procedures with these data by using the hdoopLib
libref. For example, the following statements fit a logistic regression model to the CSV data that are stored in
csvExample.csv table.

proc hplogistic data=hdoopLib.csvExample;
class Group;
model Success = Dose;
performance host = "compute_appliance.sas.com"

gridmode = asym;
run;

Figure 3.16 shows the results of this analysis. You see that the procedure ran in distributed mode and that
the input data were read in parallel asymmetric mode. The metadata that you created by using the HDMD
procedure have been used successfully in executing this analysis.
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Figure 3.16 Alongside-HDFS Execution with CSV Data

The HPLOGISTIC ProcedureThe HPLOGISTIC Procedure

Performance Information

Host Node compute_appliance.sas.com

Execution Mode Distributed

Number of Compute Nodes 142

Number of Threads per Node 32

Data Access Information

Data Engine Role Path

GRIDLIB.CSVEXAMPLE HADOOP Input Parallel, Asymmetric

Model Information

Data Source GRIDLIB.CSVEXAMPLE

Response Variable Success

Class Parameterization GLM

Distribution Binary

Link Function Logit

Optimization Technique Newton-Raphson with Ridging

Class Level Information

Class Levels Values

Group 3 group1 group2 group3

Number of Observations Read 1000

Number of Observations Used 1000

Parameter Estimates

Parameter Estimate
Standard

Error DF t Value Pr > |t|

Intercept 0.1243 0.1295 Infty 0.96 0.3371

Dose -0.2674 0.2216 Infty -1.21 0.2277

Output Data Sets
In the alongside-the-database mode, the data are read in distributed form, minimizing data movement for
best performance. Similarly, when you write output data sets and a high-performance analytical procedure
executes in distributed mode, the data can be written in parallel into the database.

For example, in the following statements, the HPLOGISTIC procedure executes in distributed mode by using
eight nodes on the appliance to perform the logistic regression on work.simData:

proc hplogistic data=simData;
class a b c;
model y = a b c x1 x2 x3;
id a;
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output out=applianc.simData_out pred=p;
performance host="hpa.sas.com" nodes=8;

run;

The output data set applianc.simData_out is written in parallel into the database. Although the data are fed
on eight nodes, the database might distribute the data on more nodes.

When a high-performance analytical procedure executes in single-machine mode, all output objects are
created on the client. If the libref of the output data sets points to the appliance, the data are transferred to the
database on the appliance. This can lead to considerable performance degradation compared to execution in
distributed mode.

Many procedures in SAS software add the variables from the input data set when an observationwise output
data set is created. The assumption of high-performance analytical procedures is that the input data sets can
be large and contain many variables. For performance reasons, the output data set contains the following:

• variables that are explicitly created by the statement

• variables that are listed in the ID statement, as described in Chapter 4, “Shared Statistical Concepts”
(SAS/STAT User’s Guide: High-Performance Procedures)

• distribution keys or hash keys that are transferred from the input data set

Including this information enables you to add to the output data set information necessary for subsequent
SQL joins without copying the entire input data set to the output data set.

Working with Formats
You can use SAS formats and user-defined formats with high-performance analytical procedures as you can
with other procedures in the SAS System. However, because the analytic work is carried out in a distributed
environment and might depend on the formatted values of variables, some special handling can improve the
efficiency of work with formats.

High-performance analytical procedures examine the variables that are used in an analysis for association with
user-defined formats. Any user-defined formats that are found by a procedure are transmitted automatically
to the appliance. If you are running multiple high-performance analytical procedures in a SAS session and
the analysis variables depend on user-defined formats, you can preprocess the formats. This step involves
generating an XML stream (a file) of the formats and passing the stream to the high-performance analytical
procedures.

Suppose that the following formats are defined in your SAS program:

proc format;
value YesNo 1='Yes' 0='No';
value checkThis 1='ThisisOne' 2='ThisisTwo';
value $cityChar 1='Portage' 2='Kinston';

run;
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The next group of SAS statements create the XML stream for the formats in the file Myfmt.xml, associate that
file with the file reference myxml, and pass the file reference with the FMTLIBXML= option in the PROC
HPLOGISTIC statement:

filename myxml 'Myfmt.xml';
libname myxml XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;
proc format cntlout=myxml.allfmts;
run;

proc hplogistic data=six fmtlibxml=myxml;
class wheeze cit age;
format wheeze best4. cit $cityChar.;
model wheeze = cit age;

run;

Generation and destruction of the stream can be wrapped in convenience macros:

%macro Make_XMLStream(name=tempxml);
filename &name 'fmt.xml';
libname &name XML92 xmltype=sasfmt tagset=tagsets.XMLsuv;
proc format cntlout=&name..allfmts;
run;

%mend;

%macro Delete_XMLStream(fref);
%let rc=%sysfunc(fdelete(&fref));

%mend;

If you do not pass an XML stream to a high-performance analytical procedure that supports the
FMTLIBXML= option, the procedure generates an XML stream as needed when it is invoked.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement defines performance parameters for multithreaded and distributed comput-
ing, passes variables that describe the distributed computing environment, and requests detailed results about
the performance characteristics of a high-performance analytical procedure.

You can also use the PERFORMANCE statement to control whether a high-performance analytical procedure
executes in single-machine or distributed mode.

You can specify the following performance-options in the PERFORMANCE statement:

COMMIT=n
requests that the high-performance analytical procedure write periodic updates to the SAS log when
observations are sent from the client to the appliance for distributed processing.

High-performance analytical procedures do not have to use input data that are stored on the appliance.
You can perform distributed computations regardless of the origin or format of the input data, provided
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that the data are in a format that can be read by the SAS System (for example, because a SAS/ACCESS
engine is available).

In the following example, the HPREG procedure performs LASSO variable selection where the input
data set is stored on the client:

proc hpreg data=work.one;
model y = x1-x500;
selection method=lasso;
performance nodes=10 host='mydca' commit=10000;

run;

In order to perform the work as requested using 10 nodes on the appliance, the data set Work.One
needs to be distributed to the appliance.

High-performance analytical procedures send the data in blocks to the appliance. Whenever the number
of observations sent exceeds an integer multiple of the COMMIT= size, a SAS log message is produced.
The message indicates the actual number of observations distributed, and not an integer multiple of the
COMMIT= size.

DETAILS
requests a table that shows a timing breakdown of the procedure steps.

GRIDHOST=“name”

HOST=“name”
specifies the name of the appliance host in single or double quotation marks. If this option is specified,
it overrides the value of the GRIDHOST environment variable.

GRIDMODE=SYM | ASYM

MODE=SYM | ASYM
is a deprecated option that specifies whether to run the high-performance analytical procedure in
symmetric (SYM) mode or asymmetric (ASYM) mode. This option overrides the GRIDMODE
environment variable.

The only time you need to specify this option is when you want to run in symmetric mode alongside a
Teradata database. In all other cases, this option is not needed and the value that you specify is ignored.

GRIDTIMEOUT=s

TIMEOUT=s
specifies the time-out in seconds for a high-performance analytical procedure to wait for a connection
to the appliance and establish a connection back to the client. The default is 120 seconds. If jobs
are submitted to the appliance through workload management tools that might suspend access to the
appliance for a longer period, you might want to increase the time-out value.

INSTALL=“name”

INSTALLLOC=“name”
specifies the directory in which the shared libraries for the high-performance analytical procedure
are installed on the appliance. Specifying the INSTALL= option overrides the GRIDINSTALLLOC
environment variable.
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LASRSERVER=“path”

LASR=“path”
specifies the fully qualified path to the description file of a SAS LASR Analytic Server instance. If
the input data set is held in memory by this LASR Analytic Server instance, then the procedure runs
alongside LASR. This option is not needed to run alongside LASR if the DATA= specification of the
input data uses a libref that is associated with a LASR Analytic Server instance. For more information,
see the section “Alongside-LASR Distributed Execution” on page 20 and the SAS LASR Analytic
Server: Reference Guide.

NODES=ALL | n

NNODES=ALL | n
specifies the number of nodes in the distributed computing environment, provided that the data are not
processed alongside the database.

Specifying NODES=0 indicates that you want to process the data in single-machine mode on the client
machine. If the input data are not alongside the database, this is the default. The high-performance
analytical procedures then perform the analysis on the client. For example, the following sets of
statements are equivalent:

proc hplogistic data=one;
model y = x;

run;

proc hplogistic data=one;
model y = x;
performance nodes=0;

run;

If the data are not read alongside the database, the NODES= option specifies the number of nodes
on the appliance that are involved in the analysis. For example, the following statements perform the
analysis in distributed mode by using 10 units of work on the appliance that is identified in the HOST=
option:

proc hplogistic data=one;
model y = x;
performance nodes=10 host="hpa.sas.com";

run;

If the number of nodes can be modified by the application, you can specify a NODES=n option, where
n exceeds the number of physical nodes on the appliance. The SAS High-Performance Econometrics
software then oversubscribes the nodes and associates nodes with multiple units of work. For example,
on a system that has 16 appliance nodes, the following statements oversubscribe the system by a factor
of 3:
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proc hplogistic data=one;
model y = x;
performance nodes=48 host="hpa.sas.com";

run;

Usually, it is not advisable to oversubscribe the system because the analytic code is optimized for
a certain level of multithreading on the nodes that depends on the CPU count. You can specify
NODES=ALL if you want to use all available nodes on the appliance without oversubscribing the
system.

If the data are read alongside the distributed database on the appliance, specifying a nonzero value
for the NODES= option has no effect. The number of units of work in the distributed computing
environment is then determined by the distribution of the data and cannot be altered. For example, if
you are running alongside an appliance with 24 nodes, the NODES= option in the following statements
is ignored:

libname GPLib greenplm server=gpdca user=XXX password=YYY
database=ZZZ;

proc hplogistic data=gplib.one;
model y = x;
performance nodes=10 host="hpa.sas.com";

run;

NTHREADS=n

THREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, the number of threads is
determined based on the number of CPUs on the host on which the analytic computations execute. The
algorithm by which a CPU count is converted to a thread count is specific to the high-performance
analytical procedure. Most procedures create one thread per CPU for the analytic computations.

By default, high-performance analytical procedures run in multiple concurrent threads unless mul-
tithreading has been turned off by the NOTHREADS system option or you force single-threaded
execution by specifying NTHREADS=1. The largest number that can be specified for n is 256. In-
dividual high-performance analytical procedures can impose more stringent limits if called for by
algorithmic considerations.

NOTE: The SAS system options THREADS | NOTHREADS apply to the client machine on which the
SAS high-performance analytical procedures execute. They do not apply to the compute nodes in a
distributed environment.
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Overview: HPCDM Procedure
In many loss modeling applications, the loss events are analyzed by modeling the severity (magnitude) of
loss and the frequency (count) of loss separately. The primary goal of preparing these models is to estimate
the aggregate loss—that is, the total loss that occurs over a period of time for which the frequency model is
applicable. For example, an insurance company might want to assess the expected and worst-case losses for a
particular business line, such as automobile insurance, over an entire year given the models for the number of
losses in a year and the severity of each loss. A bank might want to assess the value-at-risk (VaR), a measure
of the worst-case loss, for a portfolio of assets given the frequency and severity models for each asset type.

Loss severity and loss frequency are random variables, so the aggregate loss is also a random variable. Instead
of preparing a point estimate of the expected aggregate loss, it is more desirable to estimate its probability
distribution, because this enables you to infer various aspects of the aggregate loss such as measures of
location, scale (variability), and shape in addition to percentiles. For example, the value-at-risk that banks or
insurance companies use to compute regulatory capital requirements is usually the estimate of the 97.5th or
99th percentile from the aggregate loss distribution.

Let N represent the frequency random variable for the number of loss events that occur in the time period
of interest. Let X represent the severity random variable for the magnitude of one loss event. Then, the
aggregate loss S is defined as

S D

NX
jD1

Xj

The goal is to estimate the probability distribution of S. Let FX .x/ denote the cumulative distribution function
(CDF) of X, F �nX .x/ denote the n-fold convolution of the CDF of X, and Pr.N D n/ denote the probability
of seeing n losses as per the frequency distribution. The CDF of S is theoretically computable as

FS .s/ D

1X
nD0

Pr.N D n/ � F �nX .x/

This probability distribution model of S, characterized by the CDF FS .s/, is referred to as a compound
distribution model (CDM). The HPCDM procedure computes an estimate of the CDM, given the distribution
models of X and N.

PROC HPCDM accepts the severity model of X as estimated by the SEVERITY procedure. It accepts the
frequency model of N as estimated by the COUNTREG procedure. Both the SEVERITY and COUNTREG
procedures are part of SAS/ETS software. Both procedures allow models of X and N to be conditional
on external factors (regressors). In particular, you can model the severity distribution such that its scale
parameter depends on severity regressors, and you can model the frequency distribution such that its mean
depends on frequency regressors. The frequency model can also be a zero-inflated model. PROC HPCDM
uses the estimates of model parameters and the values of severity and frequency regressors to estimate the
compound distribution model.

Direct computation of FS is usually a difficult task because of the need to compute the n-fold convolution.
Klugman, Panjer, and Willmot (1998, Ch. 4) suggest some relatively efficient recursion and inversion
methods for certain combinations of severity and frequency distributions. However, those methods assume
that distributions of N and X are fixed and all Xs are identically distributed. When the distributions of X
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and N are conditional on regressors, each set of regressor values results in a different distribution. So you
must repeat the recursion and inversion methods for each combination of regressor values, and this repetition
makes these methods prohibitively expensive. PROC HPCDM instead estimates the compound distribution
by using a Monte Carlo simulation method, which can use all available computational resources to generate a
sufficiently large, representative sample of the compound distribution while accommodating the dependence
of distributions of X and N on external factors. Conceptually, the simulation method works as follows:

1. Use the specified frequency model to draw a value N, which represents the number of loss events.

2. Use the specified severity model to draw N values, each of which represents the magnitude of loss for
each of the N loss events.

3. Add the N severity values from step 2 to compute aggregate loss S as

S D

NX
jD1

Xj

This forms one sample point of the CDM.

Steps 1 through 3 are repeated M number of times, where M is specified by you, to obtain the representative
sample of the CDM. PROC HPCDM analyzes this sample to compute empirical estimates of various summary
statistics of the compound distribution such as the mean, variance, skewness, and kurtosis in addition to
percentiles such as the median, the 95th percentile, the 99th percentile, and so on. You can also use PROC
HPCDM to write the entire simulated sample to an output data set and to produce the plot of the empirical
distribution function (EDF), which serves as a nonparametric estimate of FS .

The simulation process gets more complicated when the frequency and severity models contain regression
effects. The CDM is then conditional on the given values of regressors. The simulation process essentially
becomes a scenario analysis, because you need to specify the expected values of the regressors that together
represent the scenario for which you want to estimate the CDM. PROC HPCDM enables you to specify an
input data set that contains the scenario. If you are modeling a group of entities together (such as a portfolio
of multiple assets or a group of insurance policies), each with a different set of characteristics, then the
scenario consists of more than one observation, and each observation corresponds to a different entity. PROC
HPCDM enables you to specify such a group scenario in the input data set and performs a realistic simulation
of loss events that each entity can generate.

PROC HPCDM also enables you to specify externally simulated counts. This is useful if you have an
empirical frequency model or if you estimate the frequency model by using a method other than PROC
COUNTREG and simulate counts by using such a model. You can specify M replications of externally
simulated counts. For each of the replications, in step 1 of the simulation, instead of using the frequency
model, PROC HPCDM uses the count N that you specify. If the severity model contains regression effects,
then you can specify the scenario to simulate for each of the M replications.

If the parameters of your severity and frequency models have uncertainty associated with them, and they
usually do, then you can use PROC HPCDM to conduct parameter perturbation analysis to assess the effect
of parameter uncertainty on the estimates of CDM. If you specify that P perturbed samples be generated, then
the parameter set is perturbed P times, and each time PROC HPCDM makes a random draw from either the
univariate normal distribution of each parameter or the multivariate normal distribution over all parameters.
For each of the P perturbed parameter sets, a full compound distribution sample is simulated and summarized.
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This process yields P number of estimates for each summary statistic and percentile, which are then used to
provide you with estimates of the location and variability of each summary statistic and percentile.

You can also use PROC HPCDM to compute the distribution of an aggregate adjusted loss. For example,
in insurance applications, you might want to compute the distribution of the amount paid in a given time
period after applying adjustments such as deductible and policy limit to each individual loss. PROC HPCDM
enables you to specify SAS programming statements to adjust each severity value. If Xaj represents the
adjusted severity value, then PROC HPCDM computes Sa, an aggregate adjusted loss, as

Sa D

NX
jD1

Xaj

All the analyses that PROC HPCDM conducts for the aggregate unadjusted loss, including scenario analysis
and parameter perturbation analysis, are also conducted for the aggregate adjusted loss, thereby giving you a
comprehensive picture of the adjusted compound distribution model.

Getting Started: HPCDM Procedure
This section outlines the use of the HPCDM procedure to fit compound distribution models. The examples
are intended as a gentle introduction to some of the features of the procedure.

Estimating a Simple Compound Distribution Model
This example illustrates the simplest use of PROC HPCDM. Assume that you are an insurance company that
has used the historical data about the number of losses per year and the severity of each loss to determine that
the Poisson distribution is the best distribution for the loss frequency and that the gamma distribution is the
best distribution for the severity of each loss. Now, you want to estimate the distribution of an aggregate loss
to determine the worst-case loss that can be incurred by your policyholders in a year. In other words, you
want to estimate the compound distribution of S D

PN
iD1Xi , where the loss frequency, N, follows the fitted

Poisson distribution and the severity of each loss event, Xi , follows the fitted gamma distribution.

If your historical count and severity data are stored in the data sets Work.ClaimCount and Work.ClaimSev,
respectively, then you need to ensure that you use the following PROC COUNTREG and PROC SEVERITY
steps to fit and store the parameter estimates of the frequency and severity models:

/* Fit an intercept-only Poisson count model and
write estimates to an item store */

proc countreg data=claimcount;
model numLosses= / dist=poisson;
store countStorePoisson;

run;

/* Fit severity models and write estimates to a data set */
proc severity data=claimsev criterion=aicc outest=sevest covout plots=none;

loss lossValue;
dist _predefined_;

run;
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The STORE statement in the PROC COUNTREG step saves the count model information, including the
parameter estimates, in the Work.CountStorePoisson item store. An item store contains the model information
in a binary format that cannot be modified after it is created. You can examine the contents of an item store
that is created by a PROC COUNTREG step by specifying a combination of the RESTORE= option and
the SHOW statement in another PROC COUNTREG step. For more information, see Chapter 11, “The
COUNTREG Procedure” (SAS/ETS User’s Guide),.

The OUTEST= option in the PROC SEVERITY statement stores the estimates of all the fitted severity
models in the Work.SevEst data set. Let the best severity model that the PROC SEVERITY step chooses be
the gamma distribution model.

You can now submit the following PROC HPCDM step to simulate an aggregate loss sample of size 10,000
by specifying the count model’s item store in the COUNTSTORE= option and the severity model’s data set
of estimates in the SEVERITYEST= option:

/* Simulate and estimate Poisson-gamma compound distribution model */
proc hpcdm countstore=countStorePoisson severityest=sevest

seed=13579 nreplicates=10000 plots=(edf(alpha=0.05) density)
print=(summarystatistics percentiles);

severitymodel gamma;
output out=aggregateLossSample samplevar=aggloss;
outsum out=aggregateLossSummary mean stddev skewness kurtosis

p01 p05 p95 p995=var pctlpts=90 97.5;
run;

The SEVERITYMODEL statement requests that an aggregate sample be generated by compounding only
the gamma distribution and the frequency distribution. Specifying the SEED= value helps you get an
identical sample each time you execute this step, provided that you use the same execution environment.
In the single-machine mode of execution, the execution environment is the combination of the operating
environment and the number of threads that are used for execution. In the distributed computing mode, the
execution environment is the combination of the operating environment, the number of nodes, and the number
of threads that are used for execution on each node.

Upon completion, PROC HPCDM creates the two output data sets that you specify in the OUT= options of the
OUTPUT and OUTSUM statements. The Work.AggregateLossSample data set contains 10,000 observations
such that the value of the AggLoss variable in each observation represents one possible aggregate loss value
that you can expect to see in one year. Together, the set of the 10,000 values of the AggLoss variable represents
one sample of compound distribution. PROC HPCDM uses this sample to compute the empirical estimates of
various summary statistics and percentiles of the compound distribution. The Work.AggregateLossSummary
data set contains the estimates of mean, standard deviation, skewness, and kurtosis that you specify in the
OUTSUM statement. It also contains the estimates of the 1st, 5th, 90th, 95th, 97.5th, and 99.5th percentiles
that you specify in the OUTSUM statement. The value-at-risk (VaR) is an aggregate loss value such that
there is a very low probability that an observed aggregate loss value exceeds the VaR. One of the commonly
used probability levels to define VaR is 0.005, which makes the 99.5th percentile an empirical estimate of the
VaR. Hence, the OUTSUM statement of this example stores the 99.5th percentile in a variable named VaR.
VaR is one of the widely used measures of worst-case risk.

Some of the default output and some of the output that you have requested by specifying the PRINT= option
are shown in Figure 4.1.
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Figure 4.1 Information, Summary Statistics, and Percentiles of the Poisson-Gamma Compound Distribution

The HPCDM Procedure
Severity Model: Gamma
Count Model: Poisson

The HPCDM Procedure
Severity Model: Gamma
Count Model: Poisson

Compound Distribution Information

Severity Model Gamma Distribution

Count Model Poisson Model in Item Store WORK.COUNTSTOREPOISSON

Sample Summary Statistics

Mean 4062.8 Median 3349.7

Standard Deviation 3429.6 Interquartile Range 4456.4

Variance 11761948.0 Minimum 0

Skewness 1.14604 Maximum 26077.4

Kurtosis 1.76466 Sample Size 10000

Sample
Percentiles

Percentile Value

1 0

5 0

25 1449.1

50 3349.7

75 5905.5

90 8792.6

95 10672.5

97.5 12391.7

99 14512.5

99.5 15877.9

Percentile
Method = 5

The “Sample Summary Statistics” table indicates that for the given parameter estimates of the Poisson
frequency and gamma severity models, you can expect to see a mean aggregate loss of 4,062.8 and a median
aggregate loss of 3,349.7 in a year. The “Sample Percentiles” table indicates that there is a 0.5% chance
that the aggregate loss exceeds 15,877.9, which is the VaR estimate, and a 2.5% chance that the aggregate
loss exceeds 12,391.7. These summary statistic and percentile estimates provide a quantitative picture of
the compound distribution. You can also visually analyze the compound distribution by examining the plots
that PROC HPCDM prepares. The first plot in Figure 4.2 shows the empirical distribution function (EDF),
which is a nonparametric estimate of the cumulative distribution function (CDF). The second plot shows
the histogram and the kernel density estimate, which are nonparametric estimates of the probability density
function (PDF).
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Figure 4.2 Nonparametric CDF and PDF Plots of the Poisson-Gamma Compound Distribution
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Figure 4.2 continued

The plots confirm the right skew that is indicated by the estimate of skewness in Figure 4.1 and a relatively
fat tail, which is indicated by comparing the maximum and the 99.5th percentiles in Figure 4.1.

Analyzing the Effect of Parameter Uncertainty on the Compound
Distribution
Continuing with the previous example, note that you have fitted the frequency and severity models by using
the historical data. Even if you choose the best-fitting models, the true underlying models are not known
exactly. This fact is reflected in the uncertainty that is associated with the parameters of your models. Any
compound distribution estimate that is computed by using these uncertain parameter estimates is inherently
uncertain. You can request that PROC HPCDM conduct parameter perturbation analysis, which assesses
the effect of the parameter uncertainty on the estimates of the compound distribution by simulating multiple
samples, each with parameters that are randomly perturbed from their mean estimates.

The following PROC HPCDM step adds the NPERTURBEDSAMPLES= option to the PROC HPCDM
statement to request that perturbation analysis be conducted and the PRINT=PERTURBSUMMARY option
to request that a summary of the perturbation analysis be displayed:
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/* Conduct parameter perturbation analysis of
the Poisson-gamma compound distribution model */

proc hpcdm countstore=countStorePoisson severityest=sevest
seed=13579 nreplicates=10000 nperturbedsamples=30
print(only)=(perturbsummary) plots=none;

severitymodel gamma;
output out=aggregateLossSample samplevar=aggloss;
outsum out=aggregateLossSummary mean stddev skewness kurtosis

p01 p05 p95 p995=var pctlpts=90 97.5;
run;

The Work.AggregateLossSummary data set contains the specified summary statistics and percentiles for all
30 perturbed samples. You can identify a perturbed sample by the value of the _DRAWID_ variable. The
first few observations of the Work.AggregateLossSummary data set are shown in Figure 4.3. For the first
observation, the value of the _DRAWID_ variable is 0, which represents an unperturbed sample—that is, the
aggregate sample that is simulated without perturbing the parameters from their means.

Figure 4.3 Summary Statistics and Percentiles of the Perturbed Samples

_SEVERITYMODEL_ _COUNTMODEL_ _DRAWID_ _SAMPLEVAR_ N MEAN STDDEV

Gamma Poisson 0 aggloss 10000 4062.76 3429.57

Gamma Poisson 1 aggloss 10000 4008.04 3406.22

Gamma Poisson 2 aggloss 10000 4426.67 3719.94

Gamma Poisson 3 aggloss 10000 3991.87 3480.10

Gamma Poisson 4 aggloss 10000 3807.58 3303.61

Gamma Poisson 5 aggloss 10000 4083.70 3429.83

Gamma Poisson 6 aggloss 10000 4185.82 3525.20

Gamma Poisson 7 aggloss 10000 3882.99 3372.81

Gamma Poisson 8 aggloss 10000 4092.94 3483.60

Gamma Poisson 9 aggloss 10000 4039.82 3454.69

Gamma Poisson 10 aggloss 10000 3851.17 3287.52

SKEWNESS KURTOSIS P01 P05 P90 P95 P97_5 var

1.14604 1.76466 0 0 8792.64 10672.49 12391.70 15877.89

1.10747 1.43304 0 0 8658.62 10521.82 12279.33 16152.05

1.14337 1.66525 0 0 9484.05 11522.70 13523.54 17575.20

1.23233 2.07634 0 0 8672.80 10568.25 12472.90 16969.77

1.08965 1.15633 0 0 8375.09 10319.59 11884.11 15255.16

1.08043 1.31018 0 0 8836.78 10707.19 12399.09 16236.24

1.12642 1.49282 0 0 9095.46 11056.46 12752.18 16519.99

1.22931 1.95615 0 0 8515.35 10371.84 12245.23 16153.91

1.10040 1.47077 0 0 8923.13 10757.13 12522.34 16275.95

1.17185 1.84608 0 0 8696.09 10679.34 12611.43 16350.84

1.12302 1.60240 0 0 8383.29 10129.41 11725.89 15303.35

The PRINT=PERTURBSUMMARY option in the preceding PROC HPCDM step produces the “Sample
Perturbation Analysis” and “Sample Percentile Perturbation Analysis” tables that are shown in Figure 4.4.
The tables show that you can expect a mean aggregate loss of about 4,049.1 and the standard error of the
mean is 193.6. If you want to use the VaR estimate to determine the amount of reserves that you need to
maintain to cover the worst-case loss, then you should consider not only the mean estimate of the 99.5th
percentile, which is about 16,339.1, but also the standard error of 692.8 to account for the effect of uncertainty
in your frequency and severity parameter estimates.
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Figure 4.4 Summary of Perturbation Analysis of the Poisson-Gamma Compound Distribution

The HPCDM Procedure
Severity Model: Gamma
Count Model: Poisson

The HPCDM Procedure
Severity Model: Gamma
Count Model: Poisson

Sample Perturbation Analysis

Statistic Estimate
Standard

Error

Mean 4049.1 193.55480

Standard Deviation 3448.5 132.43375

Variance 11909479 919586.4

Skewness 1.14075 0.04610

Kurtosis 1.64953 0.27146

Number of Perturbed Samples = 30

Size of Each Sample = 10000

Sample Percentile
Perturbation Analysis

Percentile Estimate
Standard

Error

0 0 0

1 0 0

5 0 0

25 1386.8 114.41389

50 3368.2 185.13314

75 5944.8 265.53061

90 8756.0 365.86765

95 10663.6 441.16381

97.5 12454.8 519.67311

99 14685.6 620.49261

99.5 16339.1 692.79352

Number of Perturbed
Samples = 30

Size of Each Sample = 10000

Scenario Analysis
The distributions of loss frequency and loss severity often depend on exogenous variables (regressors). For
example, the number of losses and the severity of each loss that an automobile insurance policyholder incurs
might depend on the characteristics of the policyholder and the characteristics of the vehicle. When you
fit frequency and severity models, you need to account for the effects of such regressors on the probability
distributions of the counts and severity. The COUNTREG procedure enables you to model regression effects
on the mean of the count distribution, and the SEVERITY procedure enables you to model regression effects
on the scale parameter of the severity distribution. When you use these models to estimate the compound
distribution model of the aggregate loss, you need to specify a set of values for all the regressors, which
represents the state of the world for which the simulation is conducted. This is referred to as the what-if or
scenario analysis.
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Consider that you, as an automobile insurance company, have postulated that the distribution of the loss event
frequency depends on five regressors (external factors): age of the policyholder, gender, type of car, annual
miles driven, and policyholder’s education level. Further, the distribution of the severity of each loss depends
on three regressors: type of car, safety rating of the car, and annual household income of the policyholder
(which can be thought of as a proxy for the luxury level of the car). Note that the frequency model regressors
and severity model regressors can be different, as illustrated in this example.

Let these regressors be recorded in the variables Age (scaled by a factor of 1/50), Gender (1: female, 2:
male), CarType (1: sedan, 2: sport utility vehicle), AnnualMiles (scaled by a factor of 1/5,000), Education (1:
high school graduate, 2: college graduate, 3: advanced degree holder), CarSafety (scaled to be between 0 and
1, the safest being 1), and Income (scaled by a factor of 1/100,000), respectively. Let the historical data about
the number of losses that various policyholders incur in a year be recorded in the NumLoss variable of the
Work.LossCounts data set, and let the severity of each loss be recorded in the LossAmount variable of the
Work.Losses data set.

The following PROC COUNTREG step fits the count regression model and stores the fitted model information
in the Work.CountregModel item store:

/* Fit negative binomial frequency model for the number of losses */
proc countreg data=losscounts;

model numloss = age gender carType annualMiles education / dist=negbin;
store work.countregmodel;

run;

You can examine the parameter estimates of the count model that are stored in the Work.CountregModel item
store by submitting the following statements:

/* Examine the parameter estimates for the model in the item store */
proc countreg restore=work.countregmodel;

show parameters;
run;

The “Parameter Estimates” table that is displayed by the SHOW statement is shown in Figure 4.5.

Figure 4.5 Parameter Estimates of the Count Regression Model

ITEM STORE CONTENTS: WORK.COUNTREGMODELITEM STORE CONTENTS: WORK.COUNTREGMODEL

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 0.910479 0.090515 10.06 <.0001

age 1 -0.626803 0.058547 -10.71 <.0001

gender 1 1.025034 0.032099 31.93 <.0001

carType 1 0.615165 0.031153 19.75 <.0001

annualMiles 1 -1.010276 0.017512 -57.69 <.0001

education 1 -0.280246 0.021677 -12.93 <.0001

_Alpha 1 0.318403 0.020090 15.85 <.0001



52 F Chapter 4: The HPCDM Procedure (Experimental)

The following PROC SEVERITY step fits the severity scale regression models for all the common distribu-
tions that are predefined in PROC SEVERITY:

/* Fit severity models for the magnitude of losses */
proc severity data=losses plots=none outest=work.sevregest print=all;

loss lossamount;
scalemodel carType carSafety income;
dist _predef_;
nloptions maxiter=100;

run;

The comparison of fit statistics of various scale regression models is shown in Figure 4.6. The scale regression
model that is based on the lognormal distribution is deemed the best-fitting model according to the likelihood-
based statistics, whereas the scale regression model that is based on the generalized Pareto distribution (GPD)
is deemed the best-fitting model according to the EDF-based statistics.

Figure 4.6 Severity Model Comparison

The SEVERITY ProcedureThe SEVERITY Procedure

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

Burr 127231 127243 127243 127286 7.75407 224.47578 27.41346

Exp 128431 128439 128439 128467 6.13537 181.83094 12.33919

Gamma 128324 128334 128334 128370 7.54562 276.13156 24.59515

Igauss 127434 127444 127444 127480 6.15855 211.51908 17.70942

Logn 127062 * 127072 * 127072 * 127107 * 6.77687 212.70400 21.47945

Pareto 128166 128176 128176 128211 5.37453 110.53673 7.07119

Gpd 128166 128176 128176 128211 5.37453 * 110.53660 * 7.07116 *

Weibull 128429 128439 128439 128475 6.21268 190.81178 13.45425

Note: The asterisk (*) marks the best model according to each column's criterion.

Now, you are ready to analyze the distribution of the aggregate loss that can be expected from a specific
policyholder—for example, a 59-year-old male policyholder with an advanced degree who earns 159,870
and drives a sedan that has a very high safety rating about 11,474 miles annually. First, you need to encode
and scale this information into the appropriate regressor variables of a data set. Let that data set be named
Work.SinglePolicy, with an observation as shown in Figure 4.7.

Figure 4.7 Scenario Analysis Data for One Policyholder

age gender carType annualMiles education carSafety income

1.18 2 1 2.2948 3 0.99532 1.5987
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Now, you can submit the following PROC HPCDM step to analyze the compound distribution of the
aggregate loss that is incurred by the policyholder in the Work.SinglePolicy data set in a given year by using
the frequency model from the Work.CountregModel item store and the two best severity models, lognormal
and GPD, from the Work.SevRegEst data set:

/* Simulate the aggregate loss distribution for the scenario
with single policyholder */

proc hpcdm data=singlePolicy nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest;

severitymodel logn gpd;
outsum out=onepolicysum mean stddev skew kurtosis median

pctlpts=97.5 to 99.5 by 1;
run;

The displayed results from the preceding PROC HPCDM step are shown in Figure 4.8.

When you use a severity scale regression model, it is recommended that you verify the severity scale
regressors that are used by PROC HPCDM by examining the Scale Model Regressors row of the “Compound
Distribution Information” table. PROC HPCDM detects the severity regressors automatically by examining
the variables in the SEVERITYEST= and DATA= data sets. If those data sets contain variables that you did
not include in the SCALEMODEL statement in PROC SEVERITY, then such variables can be treated as
severity regressors. One common mistake that can lead to this situation is to fit a severity model by using the
BY statement and forget to specify the identical BY statement in the PROC HPCDM step; this can cause
PROC HPCDM to treat BY variables as scale model regressors. In this example, Figure 4.8 confirms that the
correct set of scale model regressors is detected.

Figure 4.8 Scenario Analysis Results for One Policyholder with Lognormal Severity Model

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Lognormal Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Summary Statistics

Mean 209.76287 Median 0

Standard Deviation 559.78686 Interquartile Range 126.67003

Variance 313361.3 Minimum 0

Skewness 5.04884 Maximum 9998.2

Kurtosis 39.24667 Sample Size 10000
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Figure 4.8 continued

Sample Percentiles

Percentile Value

0 0

1 0

5 0

25 0

50 0

75 126.67003

95 1215.9

97.5 1863.1

98.5 2288.9

99 2737.3

99.5 3529.0

Percentile
Method = 5

The “Sample Summary Statistics” and “Sample Percentiles” tables in Figure 4.8 show estimates of the
aggregate loss distribution for the lognormal severity model. The average expected loss is about 210, and the
worst-case loss, if approximated by the 97.5th percentile, is about 1,863. The percentiles table shows that
the distribution is highly skewed to the right; this is also confirmed by the skewness estimate. The median
estimate of 0 can be interpreted in two ways. One way is to conclude that the policyholder will not incur
any loss in 50% of the years during which he or she is insured. The other way is to conclude that 50%
of policyholders who have the characteristics of this policyholder will not incur any loss in a given year.
However, there is a 2.5% chance that the policyholder will incur a loss that exceeds 1,863 in any given year
and a 0.5% chance that the policyholder will incur a loss that exceeds 3,529 in any given year.

If the aggregate loss sample is simulated by using the GPD severity model, then the results are as shown in
Figure 4.9. The average and worst-case losses are 211 and 1,856, respectively. These estimates are very close
to the values that are predicted by the lognormal severity model.

Figure 4.9 Scenario Analysis Results for One Policyholder with GPD Severity Model

The HPCDM Procedure
Severity Model: Gpd

Count Model: NegBin(p=2)

The HPCDM Procedure
Severity Model: Gpd

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Generalized Pareto Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Summary Statistics

Mean 211.16729 Median 0

Standard Deviation 539.58331 Interquartile Range 121.18808

Variance 291150.1 Minimum 0

Skewness 4.44116 Maximum 7349.2

Kurtosis 29.03404 Sample Size 10000
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Figure 4.9 continued

Sample Percentiles

Percentile Value

0 0

1 0

5 0

25 0

50 0

75 121.18808

95 1259.5

97.5 1855.7

98.5 2288.5

99 2577.5

99.5 3294.9

Percentile
Method = 5

The scenario that you just analyzed contains only one policyholder. You can extend the scenario to include
multiple policyholders. Let the Work.GroupOfPolicies data set record information about five different
policyholders, as shown in Figure 4.10.

Figure 4.10 Scenario Analysis Data for Multiple Policyholders

policyholderId age gender carType annualMiles education carSafety income

1 1.18 2 1 2.2948 3 0.99532 1.59870

2 0.66 2 1 2.6718 2 0.86412 0.84459

3 0.64 2 2 1.9528 1 0.86478 0.50177

4 0.46 1 2 2.6402 2 0.27062 1.18870

5 0.62 1 1 1.7294 1 0.32830 0.37694

The following PROC HPCDM step conducts a scenario analysis for the aggregate loss that is incurred by all
five policyholders in the Work.GroupOfPolicies data set together in one year:

/* Simulate the aggregate loss distribution for the scenario
with multiple policyholders */

proc hpcdm data=groupOfPolicies nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest
plots=(conditionaldensity(rightq=0.95)) nperturbedSamples=50;

severitymodel logn gpd;
outsum out=multipolicysum mean stddev skew kurtosis median

pctlpts=97.5 to 99.5 by 1;
run;

The preceding PROC HPCDM step conducts perturbation analysis by simulating 50 perturbed samples. The
perturbation summary results for the lognormal severity model are shown in Figure 4.11, and the results for
the GPD severity model are shown in Figure 4.12. If the severity of each loss follows the fitted lognormal
distribution, then you can expect that the group of policyholders together incurs an average loss of 5,333˙
547 and a worst-case loss of 26,416˙ 2,681 when you define the worst-case loss as the 97.5th percentile.
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Figure 4.11 Perturbation Analysis of Losses from Multiple Policyholders with Lognormal Severity Model

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Lognormal Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Perturbation Analysis

Statistic Estimate
Standard

Error

Mean 5333.4 547.02353

Standard Deviation 7428.7 729.93126

Variance 55718988 11240603

Skewness 2.99560 0.18583

Kurtosis 14.12580 2.83814

Number of Perturbed Samples = 50

Size of Each Sample = 10000

Sample Percentile Perturbation
Analysis

Percentile Estimate
Standard

Error

1 0 0

5 0 0

25 727.92534 113.89462

50 2589.4 302.39245

75 6919.1 718.06509

95 20059.4 1971.8

97.5 26416.3 2681.2

98.5 31256.8 3136.3

99 35166.1 3403.8

99.5 42119.0 4099.4

Number of Perturbed
Samples = 50

Size of Each Sample = 10000

If the severity of each loss follows the fitted GPD distribution, then you can expect an average loss of 5,303
˙ 553 and a worst-case loss of 25,885˙ 2,936.

If you decide to use the 99.5th percentile to define the worst-case loss, then the worst-case loss is 42,119˙
4,099 for the lognormal severity model and 40,626˙ 5,022 for the GPD severity model. The numbers for
lognormal and GPD are well within one standard error of each other, which indicates that the aggregate loss
distribution is less sensitive to the choice of these two severity distributions in this particular example; you
can use the results from either of them.
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Figure 4.12 Perturbation Analysis of Losses from Multiple Policyholders with GPD Severity Model

The HPCDM Procedure
Severity Model: Gpd

Count Model: NegBin(p=2)

The HPCDM Procedure
Severity Model: Gpd

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Generalized Pareto Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Perturbation Analysis

Statistic Estimate
Standard

Error

Mean 5302.7 552.73848

Standard Deviation 7280.4 836.84441

Variance 53704766 12319537

Skewness 2.90094 0.19750

Kurtosis 13.29785 2.75709

Number of Perturbed Samples = 50

Size of Each Sample = 10000

Sample Percentile Perturbation
Analysis

Percentile Estimate
Standard

Error

1 0 0

5 0 0

25 708.74349 102.91404

50 2616.7 282.24080

75 6974.4 697.83278

95 19747.8 2171.9

97.5 25885.1 2936.3

98.5 30424.8 3525.2

99 34213.3 4066.3

99.5 40626.2 5022.4

Number of Perturbed
Samples = 50

Size of Each Sample = 10000

The PLOTS=CONDITIONALDENSITY option that is used in the preceding PROC HPCDM step prepares
the conditional density plots for the body and right-tail regions of the density function of the aggregate
loss. The plots for the aggregate loss sample that is generated by using the lognormal severity model are
shown in Figure 4.13. The plot on the left side is the plot of Pr.Y jY � 19,085/, where the limit 19,085
is the 95th percentile as specified by the RIGHTQ=0.95 option. The plot on the right side is the plot of
Pr.Y jY > 19,085/, which helps you visualize the right-tail region of the density function. You can also
request the plot of the left tail by specifying the LEFTQ= suboption of the CONDITIONALDENSITY option
if you want to explore the details of the left tail region. Note that the conditional density plots are always
produced by using the unperturbed sample.
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Figure 4.13 Conditional Density Plots for the Aggregate Loss of Multiple Policyholders

Syntax: HPCDM Procedure
The following statements are used with the HPCDM procedure:

PROC HPCDM options ;
BY variable-list ;
DISTBY replication-id-variable ;
SEVERITYMODEL severity-model-list ;
EXTERNALCOUNTS COUNT=frequency-variable < ID=replication-id-variable > ;
OUTPUT OUT=SAS-data-set < variable-name-options > < / out-option > ;
OUTSUM OUT=SAS-data-set statistic-keyword< =variable-name > < ... statistic-keyword< =variable-

name > > < outsum-options > ;
PERFORMANCE options ;
Programming statements ;
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Functional Summary
Table 4.1 summarizes the statements and options available in the HPCDM procedure.

Table 4.1 HPCDM Functional Summary

Description Statement Option

Statements
Specifies the names of severity distribution
models

SEVERITYMODEL

Specifies externally simulated count data EXTERNALCOUNTS
Specifies where and how the full simulated
samples are written

OUTPUT

Specifies where and how the summary statistics of
simulated samples are written

OUTSUM

Specifies performance options PERFORMANCE
Specifies programming statements that define an
objective function

Programming statements

Data Set Options
Specifies the input data set PROC HPCDM DATA=
Specifies the output data set for the full simulated
samples

OUTPUT OUT=

Specifies the output data set for the summary
statistics

OUTSUM OUT=

Model Input Options
Specifies the variable that contains externally
simulated counts

EXTERNALCOUNTS COUNT=

Specifies the item store that contains the
frequency (count) model

PROC HPCDM COUNTSTORE=

Specifies the replicate identifier variable for
external counts

EXTERNALCOUNTS ID=

Specifies the input data set for parameter
estimates of the severity models

PROC HPCDM SEVERITYEST=

Simulation Options
Specifies the adjusted severity symbol in the
programming statements

PROC HPCDM ADJUSTEDSEVERITY=

Specifies the number of parameter-perturbed
samples to be simulated

PROC HPCDM NPERTURBEDSAMPLES=

Specifies a number that controls the size of the
simulated sample

PROC HPCDM NREPLICATES=

Specifies a seed for the internal pseudo-random
number generator

PROC HPCDM SEED=



60 F Chapter 4: The HPCDM Procedure (Experimental)

Table 4.1 continued

Description Statement Option

Output Preparation Options
Specifies the variable for the aggregate adjusted
loss sample

OUTPUT ADJSAMPLEVAR=

Specifies the names of the variables for percentiles OUTSUM PCTLNAME=
Specifies the decimal precision to form default
percentile variable names

OUTSUM PCTLNDEC=

Specifies percentiles to compute and report OUTSUM PCTLPTS=
Specifies the method to compute the percentiles PROC HPCDM PCTLDEF=
Specifies that all perturbed samples be written to
the OUT= data set

OUTPUT PERTURBOUT

Specifies the variable for the aggregate loss
sample

OUTPUT SAMPLEVAR=

Specifies the denominator for computing second-
and higher-order moments

PROC HPCDM VARDEF=

Displayed Output and Plotting Options
Suppresses all displayed and graphical output PROC HPCDM NOPRINT
Specifies which displayed output to prepare PROC HPCDM PRINT=
Specifies which graphical output to prepare PROC HPCDM PLOTS=

PROC HPCDM Statement
PROC HPCDM options ;

The PROC HPCDM statement invokes the procedure. You can specify the following options, which are listed
in alphabetical order.

ADJUSTEDSEVERITY=symbol-name

ADJSEV=symbol-name
names the symbol that represents the adjusted severity value in the SAS programming statements that
you specify. The symbol-name is a SAS name that conforms to the naming conventions of a SAS
variable. For more information, see the section “Programming Statements” on page 71.

COUNTSTORE=SAS-item-store
names the item store that contains all the information about the frequency (count) model. The
COUNTREG procedure generates this item store when you use the STORE statement.

The exogenous variables in the frequency model, if any, are deduced from this item store. The DATA=
data set must contain all those variables.

You must specify this option if you do not specify the EXTERNALCOUNTS statement. This option is
ignored if you specify the EXTERNALCOUNTS statement, because PROC HPCDM does not need to
simulate frequency counts internally when you specify externally simulated counts.
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In SAS/ETS 13.1, PROC COUNTREG can create an item store only when you fit one count model
and when you do not specify the BY statement in PROC COUNTREG. So if you specify the
COUNTSTORE= option, then you cannot specify the BY statement in PROC HPCDM, and vice versa.

DATA=SAS-data-set
names the input data set that contains the values of regression variables in frequency or severity models
and severity adjustment variables that you use in the programming statements.

The DATA= data set specifies information about the scenario for which you want to estimate the
aggregate loss distribution. The contents of the data set are interpreted differently based on whether
you specify the EXTERNALCOUNTS statement. For more information, see the section “Specifying
Scenario Data in the DATA= Data Set” on page 71.

NOPRINT
turns off all displayed and graphical output. If you specify this option, then PROC HPCDM ignores
any value that you specify for the PRINT= or PLOTS= option.

NPERTURBEDSAMPLES=number

NPERTURB=number
requests that parameter perturbation analysis be conducted. The model parameters are perturbed the
specified number of times and a separate full sample is simulated for each set of perturbed parameter
values. The summary statistics and percentiles are computed for each such perturbed sample, and their
values are aggregated across the samples to compute the mean and standard deviation of each summary
statistic and percentile.

The parameter perturbation procedure makes random draws of parameter values from a multivariate
normal distribution if the covariance estimates of the parameters are available in the SEVERITYEST=
data set for the severity model and in the COUNTSTORE= store for the count model. If covariance
estimates are not available, then for each parameter, a random draw is made from the univariate normal
distribution that has mean and standard deviation equal to the point estimate and the standard error,
respectively, of that parameter. If neither covariance nor standard error estimates are available, then
perturbation analysis is not conducted.

If you specify the PRINT=ALL or PRINT=PERTURBSUMMARY option, then the summary of
perturbation analysis is printed for the core summary statistics and the percentiles of the aggregate
loss distribution. If you specify the OUTSUM statement, then the requested summary statistics are
written to the OUTSUM= data set for each perturbed sample. You can also optionally request that each
perturbed sample be written in its entirety to the OUT= data set by specifying the PERTURBOUT
option in the OUTPUT statement.

For more information on the parameter perturbation analysis, see the section “Parameter Perturbation
Analysis” on page 87.

NREPLICATES=number

NREP=number
specifies a number that controls the size of the compound distribution sample that PROC HPCDM sim-
ulates. The number is interpreted differently based on whether you specify the EXTERNALCOUNTS
statement.

If you do not specify the EXTERNALCOUNTS statement, then the sample size is equal to the number
that you specify for this option. If you do not specify this option, then a default value of 100,000 is
used.
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If you specify the EXTERNALCOUNTS statement, then the number of replicates that you specify in
the DATA= data set is multiplied by the number that you specify for this option to get the total size of
the compound distribution sample. If you do not specify this option, then a default value of 1 is used.

PCTLDEF=percentile-method
specifies the method to compute the percentiles of the compound distribution. The percentile-method
can be 1, 2, 3, 4, or 5. The default method is 5. For more information, see the description of the
PCTLDEF= option in the UNIVARIATE procedure in the Base SAS Procedures Guide: Statistical
Procedures.

PLOTS < (global-plot-options) > =plot-request-option

PLOTS < (global-plot-options) > =(plot-request-option . . . plot-request-option)
specifies the desired graphical output.

By default, the HPCDM procedure produces no graphical output.

You can specify the following global-plot-option:

ONLY
turns off the default graphical output and prepares only the requested plots.

If you specify more than one plot-request-option, then separate them with spaces and enclose them in
parentheses. The following plot-request-options are available:

ALL
displays all the graphical output.

CONDITIONALDENSITY (conditional-density-plot-options)

CONDPDF (conditional-density-plot-options)
prepares a group of plots of the conditional density functions estimates. The group contains at
most three plots, each conditional on the value of the aggregate loss being in one of the three
regions that are defined by the quantiles that you specify in the following conditional-density-
plot-options:

LEFTQ=number
specifies the quantile in the range (0,1) that marks the end of the left-tail region. If you
specify a value of l for number , then the left-tail region is defined as the set of values that are
less than or equal to ql , where ql is the lth quantile. For the left-tail region, nonparametric
estimates of the conditional probability density function f lS .s/ D PrŒS D sjS � ql � are
plotted. The value of ql is estimated by the 100l th percentile of the simulated compound
distribution sample.

If you do not specify this option or you specify a missing value for this option, then the
left-tail region is not plotted.

RIGHTQ=number
specifies the quantile in the range (0,1) that marks the beginning of the right-tail region. If
you specify a value of r for number , then the right-tail region is defined as the set of values
that are greater than qr , where qr is the rth quantile. For the right-tail region, nonparametric
estimates of the conditional probability density function f rS .s/ D PrŒS D sjS > qr � are
plotted. The value of qr is estimated by the 100r th percentile of the simulated compound
distribution sample.
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If you do not specify this option or you specify a missing value for this option, then the
right-tail region is not plotted.

You must specify nonmissing value for at least one of the preceding two options. For the region
between the LEFTQ= and RIGHTQ= quantiles, which is referred to as the central or body region,
nonparametric estimates of the conditional probability density function f cS .s/ D PrŒS D sjql <
S � qr � are plotted. If you do not specify a LEFTQ= value, then ql is assumed to be 0. If you do
not specify a RIGHTQ= value, then qr is assumed to be1.

DENSITY
prepares a plot of the nonparametric estimates of the probability density function (in particular,
histogram and kernel density estimates) of the compound distribution.

EDF < (edf-plot-option) >
prepares a plot of the nonparametric estimates of the cumulative distribution function of the
compound distribution.

You can request that the confidence interval be plotted by specifying the following edf-plot-option:

ALPHA=number
specifies the confidence level in the (0,1) range that is used for computing the confidence
intervals for the EDF estimates. If you specify a value of ˛ for number , then the upper and
lower confidence limits for the confidence level of 100.1 � ˛/ are plotted.

NONE
displays none of the graphical output. If you specify this option, then it overrides all other plot
request options. The default graphical output is also suppressed.

Note that if the simulated sample size is large, then it can take a significant amount of time and memory
to prepare the plots.

PRINT < (global-display-option) > =display-option

PRINT < (global-display-option) > =(display-option . . . display-option)
specifies the desired displayed output. If you specify more than one display-option, then separate them
with spaces and enclose them in parentheses.

You can specify the following global-display-option:

ONLY
turns off the default displayed output and displays only the requested output.

You can specify the following display-options:

ALL
displays all the output.

NONE
displays none of the output. If you specify this option, then it overrides all other display options.
The default displayed output is also suppressed.
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PERCENTILES
displays the percentiles of the compound distribution sample. This includes all the predefined
percentiles, percentiles that you request in the OUTSUM statement, and percentiles that you
specify for preparing conditional density plots.

PERTURBSUMMARY
displays the mean and standard deviation of the summary statistics and percentiles that are taken
across all the samples produced by perturbing the model parameters. This option is valid only if
you specify the NPERTURBEDSAMPLES= option in the PROC HPCDM statement.

SUMMARYSTATISTICS | SUMSTAT
displays the summary statistics of the compound distribution sample.

If you do not specify the PRINT= option or the ONLY global-display-option, then the default displayed
output is equivalent to specifying PRINT=(SUMMARYSTATISTICS).

SEED=number
specifies the integer to use as the seed in generating the pseudo-random numbers that are used for
simulating severity and frequency values. If you do not specify the seed or if number is negative or 0,
then the time of day from the computer’s clock is used as the seed.

SEVERITYEST=SAS-data-set
names the input data set that contains the parameter estimates for the severity model. The format of
this data set must be the same as the OUTEST= data set that is produced by the SEVERITY procedure.

The names of the regression variables in the scale regression model, if any, are deduced from this data
set. In particular, PROC HPCDM assumes that all the variables in the SEVERITYEST= data set that
do not appear in the following list are scale regression variables:

• BY variables

• _MODEL_, _TYPE_, _NAME_, and _STATUS_ variables

• variables that represent distribution parameters

The DATA= data set must contain all the regressors in the scale regression model.

To ensure that PROC HPCDM correctly matches the values of regressors and the values of regression
parameter estimates, you might need to rename the regressors in the DATA= data set so that their
names match the names of the regressors that you specify in the SCALEMODEL statement of the
PROC SEVERITY step that fits the severity model.

VARDEF=divisor
specifies the divisor to use in the calculation of variance, standard deviation, kurtosis, and skewness of
the compound distribution sample. If the sample size is N, then you can specify one of the following
values for the divisor :

DF
sets the divisor for variance to N � 1. This is the default. This also changes the definitions of
skewness and kurtosis.
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N
sets the divisor to N.

For more information, see the section “Descriptive Statistics” on page 87.

BY Statement
BY variable-list ;

You can use the BY statement in the HPCDM procedure to process the input data set in groups of observations
defined by the BY variables.

If you specify the BY statement, then PROC HPCDM expects the input data set to be sorted in the order of
the BY variables unless you specify the NOTSORTED option.

The BY statement is always supported in the single-machine mode of execution. For the distributed mode, it
is supported only when the DATA= data set resides on the client machine. In other words, the BY statement
is supported only in the client-data (or local-data) mode of the distributed computing model and not for any
of the alongside modes, such as the alongside-the-database or alongside HDFS mode.

If you specify the COUNTSTORE= option, then the BY group processing is not supported.

DISTBY Statement
DISTBY replication-id-variable ;

A DISTBY statement is necessary if and only if you specify an ID= variable in the EXTERNALCOUNTS
statement. In fact, the replication-id-variable must be the same as the ID= variable. This is especially important
in the distributed mode of execution, because when the observations in the DATA= data set are distributed to
the grid nodes, by specifying the replication-id-variable as a DISTBY variable, you are instructing PROC
HPCDM to make sure that the observations that have the same value for the replication-id-variable are always
kept together on one grid node. This is required for correct simulation of the CDM in the presence of the ID=
variable.

Contrast this to the BY variables that you specify in the BY statement. The observations of a BY group might
be split across all the nodes of the grid, but the observations of a DISTBY group, which is nested within a
BY group, are never split across the nodes of the grid.

The replication-id-variable must not appear in the BY statement. However, the DATA= data set must be sorted
as if the replication-id-variable were listed after the BY variables in the BY statement.

Even though the DISTBY statement is important primarily in distributed mode, you must also specify it in
single-machine mode.
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EXTERNALCOUNTS Statement
EXTERNALCOUNTS COUNT=frequency-variable < ID=replication-id-variable > ;

The EXTERNALCOUNTS statement enables you to specify externally simulated frequency counts. By
default, PROC HPCDM internally simulates the number of loss events by using the frequency model input
(COUNTSTORE= item store). However, if you specify the EXTERNALCOUNTS statement, then PROC
HPCDM uses the counts that you specify in the DATA= data set and simulates only the severity values
internally.

If you specify more than one EXTERNALCOUNTS statement, only the first one is used.

You must specify the following option in the EXTERNALCOUNTS statement:

COUNT=count-variable
specifies the variable that contains the simulated counts. This variable must be present in the DATA=
data set.

You can also specify the following option in the EXTERNALCOUNTS statement:

ID=replication-id-variable
specifies the variable that contains the replicate identifier. This variable must be present in the DATA=
data set. Furthermore, you must specify the DISTBY statement with replication-id-variable as the only
DISTBY variable to ensure correct simulation.

The observations of DATA= data set must be arranged such that the values of the ID= variable are in
increasing order in each BY group or in the entire data set if you do not specify the BY statement.

If you do not specify the ID= option, then PROC HPCDM assumes that each observation represents
one replication. In other words, the observation number serves as the default replication identifier.

The simulation process of using the external counts to generate the compound distribution sample is described
in the section “Simulation with External Counts” on page 75.

OUTPUT Statement
OUTPUT OUT=SAS-data-set < variable-name-options > < / out-option > ;

The OUTPUT statement enables you to specify the data set to output the generated compound distribution
sample.

If you specify more than one OUTPUT statement, only the first one is used.

You must specify the output data set by using the following option:

OUT=SAS-data-set
OUTSAMPLE=SAS-data-set

specifies the output data set to contain the simulated compound distribution sample. If you specify
programming statements to adjust individual severity values, then this data set contains both unadjusted
and adjusted samples.

You can specify the following variable-name-options to control the names of the variables created in the
OUT= data set:
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ADJSAMPLEVAR=variable-name
specifies the name of the variable to contain the adjusted compound distribution sample in the OUT=
data set. If you do not specify ADJSAMPLEVAR= option, then “_AGGADJSEV_” is used by default.

This option is ignored if you do not specify the ADJUSTEDSEVERITY= option and the programming
statements to adjust the simulated severity values.

SAMPLEVAR=variable-name
specifies the name of the variable to contain the simulated sample in the OUT= data set. If you do not
specify SAMPLEVAR= option, then “_AGGSEV_” is used by default.

Further, you can request that the perturbed samples be written to the OUT= data set by specifying the
following out-option:

PERTURBOUT
specifies that all the perturbed samples be written to the OUT= data set. Each perturbed sample is
identified by the _DRAWID_ variable in the OUT= data set. A value of 0 for the _DRAWID_ variable
indicates an unperturbed sample.

Separate compound distribution samples are generated for each combination of specified severity and fre-
quency models. The _SEVERITYMODEL_ and _COUNTMODEL_ columns in the OUT= data set identify
the severity and frequency models, respectively, that are used to generate the sample in the SAMPLEVAR=
and ADJSAMPLEVAR= variables.

OUTSUM Statement
OUTSUM OUT=SAS-data-set statistic-keyword< =variable-name > < ... statistic-keyword< =variable-

name > > < outsum-options > ;

The OUTSUM statement enables you to specify the data set in which PROC HPCDM writes the summary
statistics of the compound distribution samples.

If you specify more than one OUTSUM statement, only the first one is used.

You must specify the output data set by using the following option:

OUT=SAS-data-set

OUTSUM=SAS-data-set
specifies the output data set that contains the summary statistics of each of the simulated compound
distribution samples. You can control the summary statistics that appear in this data set by specifying
different statistic-keywords and outsum-options.

You can request that one or more predefined statistics of the compound distribution sample be written to the
OUTSUM= data set. For each specification of the form statistic-keyword< =variable-name >, the statistic
that is specified by the statistic-keyword is written to a variable named variable-name. If you do not specify
the variable-name, then the statistic is written to a variable named statistic-keyword . You can specify the
following statistic-keywords:
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KURTOSIS

KURT
specifies the kurtosis of the compound distribution sample.

MEAN
specifies the mean of the compound distribution sample.

MEDIAN

Q2

P50
specifies the median (the 50th percentile) of the compound distribution sample.

P01
specifies the 1st percentile of the compound distribution sample.

P05
specifies the 5th percentile of the compound distribution sample.

P95
specifies the 95th percentile of the compound distribution sample.

P99
specifies the 99th percentile of the compound distribution sample.

P99_5

P995
specifies the 99.5th percentile of the compound distribution sample.

Q1

P25
specifies the lower or 1st quartile (the 25th percentile) of the compound distribution sample.

Q3

P75
specifies the upper or 3rd quartile (the 75th percentile) of the compound distribution sample.

QRANGE
specifies the interquartile range (Q3–Q1) of the compound distribution sample.

SKEWNESS

SKEW
specifies the skewness of the compound distribution sample.

STDDEV

STD
specifies the standard deviation of the compound distribution sample.

All percentiles are computed by using the method that you specify for the PCTLDEF= option in the PROC
HPCDM statement. You can also request additional percentiles to be reported in the OUTSUM= data set by
specifying the following outsum-options:
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PCTLPTS=percentile-list
specifies one or more percentiles that you want to be computed and written to the OUTSUM= data
set. This option is useful if you need to request percentiles that are not available in the preceding
list of statistic-keyword values. Each percentile value must belong to the (0,100) open interval. The
percentile-list is a comma-separated list of numbers. You can also use a list notation of the form
“< number1 > to < number2 > by < increment >”. For example, the following two options are equivalent:

pctlpts=10, 20, 99.6, 99.7, 99.8, 99.9
pctlpts=10, 20, 99.6 to 99.9 by 0.1

The name of the variable for a given percentile value is decided by the PCTLNAME= option.

PCTLNAME=percentile-variable-name-list
specifies the names of the variables that contain the estimates of the percentiles that you request by
using the PCTLPTS= option.

If you do not specify the PCTLNAME= option, then each percentile value t in the list of values in
the PCTLPTS= option is written to the variable named “Pt ,” where the decimal point in t , if any, is
replaced by an underscore.

The percentile-variable-name-list is a space-separated list of names. You can also use a shortcut
notation of <prefix>m–<prefix>n for two integers m and n (m < n) to generate the following list of
names: <prefix>m, <prefix>mC 1, ..., and <prefix>n. For example, the following two options are
equivalent:

pctlname=p1 p2 pc5 pc6 pc7 pc8 pc9 pc10
pctlname=p1 p2 pc5-pc10

The name in jth position of the expanded name list of the PCTLNAME= option is used to create a
variable for a percentile value in the jth position of the expanded value list of the PCTLPTS= option.
If you specify kn names in the PCTLNAME= option and kv percentile values in the PCTLPTS=
option, and if kn < kv , then the first kn percentiles are written to the variables that you specify and the
remaining kv � kn percentiles are written to the variables that have the name of the form Pt, where t is
the text representation of the percentile value that is formed by retaining at most PCTLNDEC= digits
after the decimal point and replacing the decimal point with an underscore (‘_’). For example, assume
you specify the options

pctlpts=10, 20, 99.3 to 99.5 by 0.1, 99.995
pctlname=pten ptwenty ninenine3-ninenine5

Then PROC HPCDM writes the 10th and 20th percentiles to pten and ptwenty variables, respectively;
the 99.3rd through 99.5th percentiles to ninenine3, ninenine4, and ninenine5 variables, respectively;
and the remaining 99.995th percentile to the P99_995 variable.

If a percentile value in the PCTLPTS= option matches a percentile value implied by one of the
predefined percentile statistics and you specify the corresponding statistic-keyword , then the variable
name that is implied by the statistic-keyword< =variable-name > specification takes precedence over
the name that you specify in the PCTLNAME= option. For example, assume you specify the predefined
percentile statistic of P95 as in the OUTSUM statement
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outsum out=mypctls p95=ninetyfifth
pctlpts=95 to 99 by 1 pctlname=pct95-pct99;

Then the 95th percentile is written to the ninetyfifth variable instead of the pct95 variable that the
PCTLNAME= option implies.

PCTLNDEC=integer-value
specifies the maximum number of decimal places to use while creating the names of the variables for
the percentile values in the PCTLPTS= option. The default value is 3. For example, for a percentile
value of 99.9995, PROC HPCDM creates a variable named P99_999 by default, but if you specify
PCTLNDEC=4, then the variable is named P99_9995.

The PCTLNDEC= option is used only for percentile values for which you do not specify a name in the
PCTLNAME= option.

Note that all variable names in the OUTSUM= data set have a limit of 32 characters. If a name exceeds that
limit, then it is truncated to contain only the first 32 characters. For more information about the variables in
the OUTSUM= data set, see the section “Output Data Sets” on page 90.

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement defines performance parameters for distributed and multithreaded comput-
ing, passes variables that describe the distributed computing environment, and requests detailed results about
the performance characteristics of PROC HPCDM.

You can also use the PERFORMANCE statement to control whether a high-performance analytical procedure
executes in single-machine or distributed mode.

For more information about the PERFORMANCE statement, see the section “PERFORMANCE Statement”
on page 36 of Chapter 3, “Shared Concepts and Topics.”

SEVERITYMODEL Statement
SEVERITYMODEL severity-model-list ;

The SEVERITYMODEL statement specifies one or more severity distribution models that you want to use
in simulating a compound distribution sample. The severity-model-list is a space-separated list of names
of severity models that you would use with PROC SEVERITY’s DIST statement. The SEVERITYEST=
data set must contain all the severity models in the list. If you specify a name that does not appear in the
_MODEL_ column of the SEVERITYEST= data set, then that name is ignored.

If you specify more than one SEVERITYMODEL statement, only the first one is used.

If you do not specify a SEVERITYMODEL statement, then this is equivalent to specifying all the severity
models that appear in the SEVERITYEST= data set.

A compound distribution sample is generated for each of the severity models by compounding that severity
model with the frequency model that you specify in the COUNTSTORE= item store or the external frequency
model that is encoded by the COUNT= variable that you specify in the EXTERNALCOUNTS statement.
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Programming Statements
In PROC HPCDM, you can use a series of programming statements that use variables in the DATA= data set
to adjust an individual severity value. The adjusted severity values are aggregated to form a separate adjusted
compound distribution sample.

The programming statements are executed for each simulated individual severity value. The observation
of the input data set that is used to evaluate the programming statements is determined by the simulation
procedure that is described in the section “Simulation Procedure” on page 72.

For more information, see the section “Simulation of Adjusted Compound Distribution Sample” on page 79.

Details: HPCDM Procedure

Specifying Scenario Data in the DATA= Data Set
A scenario represents a state of the world for which you want to estimate the distribution of aggregate losses.
The state consists of one or more entities that generate the loss events. For example, an entity might be an
individual who has an insurance policy or an organization that has a workers’ compensation policy. Each
entity has some characteristics of its own and some external factors that affect the frequency with which
it generates the losses and the severity of each loss. For example, characteristics of an individual with an
automobile insurance policy can include various demographics of the individual and various features of
the automobile. Characteristics of an organization with a workers’ compensation policy can be the number
of employees, revenue, ratio of temporary to permanent employees, and so on. The organization can also
be affected by external macroeconomic factors such as GDP and unemployment of the country where
the organization operates and factors that affect its industry. You need to quantify and specify all these
characteristics as external factors (regressors) when you fit severity and frequency models.

You should specify all the information about a scenario in the DATA= data set that you specify in the PROC
HPCDM statement. Each observation in the DATA= data set encodes the characteristics of an entity. For
proper simulation of counts and severities, you must specify in the DATA= data set all the characteristics
that you use as regressors in the frequency and severity models. All the regressors are expected to have
nonmissing values. If any of the regressors have a missing value in an observation, then that observation is
ignored.

The information in the DATA= data set is interpreted as follows, based on whether you specify the EXTER-
NALCOUNTS statement:

• If you do not specify the EXTERNALCOUNTS statement, then all the observations in the data set, or
in one BY group if you specify the BY statement, form a scenario. The observations are used together
to compute one random draw from the compound distribution. The total number of draws is equal
to the value that you specify in the NREPLICATES= option. The simulation process is described in
the section “Simulation with Regressors and No External Counts” on page 73 and illustrated using an
example in the section “Illustration of Aggregate Loss Simulation Process” on page 73.
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• If you specify the EXTERNALCOUNTS statement, then the DATA= data set is expected to contain
multiple replications (draws) of the frequency counts that you simulate externally for a scenario. The
DATA= data set must contain the COUNT= variable that you specify in the EXTERNALCOUNTS
statement. The replications are identified by the observation number or the ID= variable that you specify
in the EXTERNALCOUNTS statement. For each observation in a given replication, the COUNT=
variable is expected to contain the count of losses that are generated by the entity associated with that
observation. All the observations of a given replication are used together to compute one random
draw from the compound distribution. The size of the compound distribution sample is equal to the
number of distinct replications that you specify in the DATA= data set, multiplied by the value that you
specify in the NREPLICATES= option. The simulation process is described in the section “Simulation
with External Counts” on page 75 and illustrated using an example in the section “Illustration of the
Simulation Process with External Counts” on page 76.

In both cases, an observation can also contain severity adjustment variables that you can use to adjust the
severity of the losses generated by that entity, based on some policy rules. For more information about
simulating the adjusted compound distribution sample, see the section “Simulation of Adjusted Compound
Distribution Sample” on page 79.

Simulation Procedure
PROC HPCDM selects a simulation procedure based on whether you specify external counts or you request
that PROC HPCDM simulate the counts, and whether the severity or frequency models contain regression
effects. The following sections describe the process for the different scenarios.

Simulation with No Regressors and No External Counts

If you specify severity and frequency models that have no regression effects in them, and if you do not specify
externally simulated counts in the EXTERNALCOUNTS statement, then PROC HPCDM uses the following
simulation procedure.

The process is described for one severity distribution, dist . If you specify multiple severity distributions in
the SEVERITYMODEL statement, then the process is repeated for each specified distribution.

The following steps are repeated M times to generate a compound distribution sample of size M, where M is
the value that you specify in the NREPLICATES= option or the default value of that option:

1. Use the frequency model that you specify in the COUNTSTORE= option to draw a value N from the
count distribution. N is the number of loss events that are expected to occur in the time period that is
being simulated.

2. Draw N values, Xj (j D 1; : : : ; N ), from the severity distribution dist with parameters that you
specify in the SEVERITYEST= data set.

3. Add the N severity values that are drawn in step 2 to compute one point S from the compound
distribution as

S D

NX
jD1

Xj
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Note that although it is more common to fit the frequency model with regressors, PROC COUNTREG
enables you to fit a frequency model without regressors. If you do not specify any regressors in the MODEL
statement of the COUNTREG procedure, then it fits a model that contains only an intercept.

Simulation with Regressors and No External Counts

If the severity or frequency models have regression effects and if you do not specify externally simulated
counts in the EXTERNALCOUNTS statement, then you must specify a DATA= data set to provide values of
the regression variables, which together represent a scenario for which you want to simulate the CDM. In
this case, PROC HPCDM uses the following simulation procedure.

The process is described for one severity distribution. If you specify multiple severity distributions in the
SEVERITYMODEL statement, then the process is repeated for each specified distribution.

Note that you are doing scenario analysis when regression effects are present. Let K denote the number of
observations that form the scenario. This is the number of observations either in the current BY group or
in the entire DATA= data set if you do not specify the BY statement. If K > 1, then you are modeling the
scenario for a group of entities. If K = 1, then you are modeling the scenario for one entity.

The following steps are repeated M times to generate a compound distribution sample of size M, where M is
the value that you specify in the NREPLICATES= option or the default value of that option:

1. For each observation k (k D 1; : : : ; K), a count Nk is drawn from the frequency model that you
specify in the COUNTSTORE= option. The parameters of this model are determined by the frequency
regressors in observation k. Nk represents the number of loss events that are expected to be generated
by entity k in the time period that is being simulated.

2. Counts from all observations are added to compute N D
PK
kD1Nk . N is the total number of loss

events that are expected to occur in the time period that is being simulated.

3. N number of random draws are made from the severity distribution, and they are added to generate one
point of the compound distribution sample. Each of the N draws uses one of the K observations. If you
specify a scale regression model for the severity distribution, then the scale parameter of the severity
distribution is determined by the values of the severity regressors in the observation that is chosen for
that draw.

If you specify the BY statement, then a separate sample of size M is created for each BY group in the DATA=
data set.

Illustration of Aggregate Loss Simulation Process
As an illustration of the simulation process, consider a very simple example of analyzing the distribution of
an aggregate loss that is incurred by a set of policyholders of an automobile insurance company in a period
of one year. It is postulated that the frequency and severity distributions depend on three variables: Age,
Gender (1: female, 2: male), and CarType (1: sedan, 2: sport utility vehicle). So these variables are used as
regressors while you fit the count model and severity scale regression model by using the COUNTREG and
SEVERITY procedures, respectively. Now, consider that you want to use the fitted frequency and severity
models to estimate the distribution of the aggregate loss that is incurred by a set of five policyholders together.
Let the characteristics of the five policyholders be encoded in a SAS data set named Work.Scenario that has
the following contents:
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Obs age gender carType
1 30 2 1
2 25 1 2
3 45 2 2
4 33 1 1
5 50 1 1

The column Obs contains the observation number. It is shown only for the purpose of illustration. It need not
be present in the data set. The following PROC HPCDM step simulates the scenario in the Work.Scenario
data set:

proc hpcdm data=scenario
severityest=<severity parameter estimates data set>
countstore=<count model store> nreplicates=<sample size>;

severitymodel <severity distribution name(s)>;
run;

The following process generates a sample from the aggregate loss distribution for the scenario in the
Work.Scenario data set:

1. Use the values Age=30, Gender=2, and CarType=1 in the first observation to draw a count from the
count distribution. Let that count be 2. Repeat the process for the remaining four observations. Let the
counts be as shown in the Count column in the following table:

Obs age gender carType count
1 30 2 1 2
2 25 1 2 1
3 45 2 2 2
4 33 1 1 3
5 50 1 1 0

Note that the Count column is shown for illustration only; it is not added as a variable to the DATA=
data set.

2. The simulated counts from all the observations are added to get a value of N = 8. This means that
for this particular sample point, you expect a total of eight loss events in a year from these five
policyholders.

3. For the first observation, the scale parameter of the severity distribution is computed by using the
values Age=30, Gender=2, and CarType=1. That value of the scale parameter is used together with
estimates of the other parameters from the SEVERITYEST= data set to make two draws from the
severity distribution. Each of the draws simulates the magnitude of the loss that is expected from the
first policyholder. The process is repeated for the remaining four policyholders. The fifth policyholder
does not generate any loss event for this particular sample point, so no severity draws are made by
using the fifth observation. Let the severity draws, rounded to integers for convenience, be as shown in
the _SEV_ column in the following table:
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Obs age gender carType count _sev_
1 30 2 1 2 350 2100
2 25 1 2 1 4500
3 45 2 2 2 700 4300
4 33 1 1 3 600 1500 950
5 50 1 1 0

Note that the _SEV_ column is shown for illustration only; it is not added as a variable to the DATA=
data set.

PROC HPCDM adds the severity values of the eight draws to compute an aggregate loss value of
15,000. After recording this amount in the sample, the process returns to step 1 to compute the next
point in the aggregate loss sample. For example, in the second iteration, the count distribution of each
policyholder might generate one loss event for a total of five loss events, and the five severity draws
from the severity distributions that govern each of the policyholders might add up to 5,000. Then, the
value of 5,000 is recorded as the second point in the aggregate loss sample. The process continues
until M aggregate loss sample points are simulated, where the M is the value that you specify in the
NREPLICATES= option.

Simulation with External Counts

If you specify externally simulated counts by using the EXTERNALCOUNTS statement, then each replication
in the input data set represents the loss events generated by an entity. An entity can be an individual or
organization for which you want to estimate the compound distribution. If an entity has any characteristics
that are used as external factors (regressors) in developing the severity scale regression model, then you must
specify the values of those factors in the DATA= data set. If you specify the ID= variable, then multiple
observations for the same replication ID represent different entities in a group for which you are simulating
the CDM.

PROC HPCDM uses the following simulation procedure in the presence of externally simulated counts.

The process is described for one severity distribution. If you specify multiple severity distributions in the
SEVERITYMODEL statement, then the process is repeated for each specified distribution.

Let there be M distinct replications in the current BY group of the DATA= data set or in the entire DATA=
data set if you do not specify the BY statement. A replication is identified by either the observation number
or the value of the ID= variable that you specify in the EXTERNALCOUNTS statement.

For each of the M values of the replication identifier, the following steps are executed R times, where R is the
value of the NREPLICATES= option or the default value of that option:

1. Compute the total number of losses, N. If there are K (K � 1) observations for the current value of
the replication identifier, then N D

PK
kD1Nk , where Nk is the value of the COUNT= variable for

observation k.

2. N number of random draws are made from the severity distribution, and they are added to generate one
point of the compound distribution sample.

This process generates a compound distribution sample of size M �R. If you specify the BY statement, then
a separate sample of size M �R is created for each BY group in the DATA= data set.
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Illustration of the Simulation Process with External Counts
In order to illustrate the simulation process, consider the following simple example. In this example, your
severity model does not contain any regressors. An example that uses a severity scale regression model is
illustrated later. Assume that you have made 10 random draws from an external count model and recorded
them in the ExtCount variable of a SAS data set named Work.Counts1 as follows:

Obs extCount
1 3
2 2
3 0
4 1
5 3
6 4
7 1
8 2
9 0
10 5

Because the data set does not contain an ID= variable, the observation number that is shown in the Obs
column acts as the replicate identifier. The following PROC HPCDM step simulates an aggregate loss sample
by using the Work.Counts1 data set:

proc hpcdm data=work.counts1 nreplicates=5
severityest=<severity parameter estimates data set>;

severitymodel <severity distribution name(s)>;
externalcounts count=extCount;

run;

The simulation process works as follows:

1. For the first replication, which is associated with the first observation, three severity values are drawn
from the severity distribution by using the parameter estimates that you specify in the SEVERITYEST=
data set. If the severity values are 150, 500, and 320, then their sum of 970 is recorded as the first point
of the aggregate loss sample. Because the value of the NREPLICATES= option is 5, this process of
drawing three severity values and adding them to form a point of the aggregate loss sample is repeated
four more times to generate a total of five sample points that correspond to the first observation.

2. For the second replication, two severity values are drawn from the severity distribution. If the severity
values are 450 and 100, then their sum of 550 is recorded as a point of the aggregate loss sample. This
process of drawing two severity values and adding them to form a point of the aggregate loss sample
is repeated four more times to generate a total of five sample points that correspond to the second
observation.

3. The process continues until all the replications, which are observations in this case, are exhausted.
PROC HPCDM ignores any replications that generate zero number of losses. In this example, replica-
tion 3 is ignored.

The process results in an aggregate loss sample of size 50, which is equal to the number of replications in the
data set (10) multiplied by the value of the NREPLICATES= option (5).
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Now, consider an example in which the severity models in the SEVERITYEST= data set are scale regression
models. In this case, the severity distribution that is used for drawing the severity value is decided by the
values of regressors in the observation that is being processed. Consider that you want to simulate the
aggregate loss that is incurred by one policyholder and you have recorded, in the ExtCount variable, the
results of 10 random draws from an external count model. The DATA= data set has the following contents:

Obs age gender carType extCount
1 30 2 1 5
2 30 2 1 2
3 30 2 1 0
4 30 2 1 1
5 30 2 1 3
6 30 2 1 4
7 30 2 1 1
8 30 2 1 2
9 30 2 1 0
10 30 2 1 5

The simulation process in this case is the same as the process in the previous case of no regressors, except that
the severity distribution that is used for drawing the severity values has a scale parameter that is determined
by the values of the regressors Age, Gender, and CarType in the observation that is being processed. In this
particular example, all observations have the same value for all regressors, indicating that you are modeling
a scenario in which the characteristics of the policyholder do not change during the time for which you
have simulated the number of events. You can also model a scenario in which the characteristics of the
policyholder change by recording those changes in the values of the appropriate regressors.

Extending this example further, consider that you want to analyze the distribution of the aggregate loss that
is incurred by a group of policyholders, as in the example in the section “Illustration of Aggregate Loss
Simulation Process” on page 73. Let the Work.Counts2 data set record multiple replications of the number
of losses that might be generated by each policyholder. The contents of the Work.Counts2 data set are as
follows:

Obs replicateId age gender carType extCount
1 1 30 2 1 2
2 1 25 1 2 1
3 1 45 2 2 3
4 1 33 1 1 5
5 1 50 1 1 1

6 2 30 2 1 3
7 2 25 1 2 2
8 2 33 1 1 4
9 2 50 1 1 1

The ReplicateId variable records the identifier for the replication. Each replication contains multiple
observations, such that each observation represents one of the policyholders that you are analyzing. For
simplicity, only the first two replications are shown here. Note that you do not need to record an observation
if the number of loss events that are generated by a policyholder is 0, as shown for the second replication,
which does not have any data for the 45-year-old policyholder.
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The following PROC HPCDM step simulates an aggregate loss sample by using the Work.Counts2 data set:

proc hpcdm data=work.counts2 nreplicates=3
severityest=<severity parameter estimates data set>;

severitymodel <severity distribution name(s)>;
distby replicateId;
externalcounts count=extCount id=replicateId;
output out=aggloss samplevar=totalLoss;

run;

When you specify an ID= variable in the EXTERNALCOUNTS statement, you must specify the same ID=
variable in the DISTBY statement in order for the procedure to work correctly in a distributed computing
environment. Further, the DATA= set must be sorted in ascending order of the ID= variable values.

The simulation process works as follows:

1. First, the five observations of the first replication (ReplicateId=1 are analyzed. For the first observation
(Obs=1), the scale parameter of the severity distribution is computed by using the values Age=30,
Gender=2, and CarType=1. That value of the scale parameter is used together with estimates of the
other parameters from the SEVERITYEST= data set to make two draws from the severity distribution.
Next, the regressor values of the second observation are used to compute the scale parameter of the
severity distribution, which is used to make one severity draw. The process continues such that the
regressor values in the third, fourth, and fifth observations are used to decide the severity distribution
to make three, five, and one draws from, respectively. Let the severity values that are drawn from the
observations of this replication be as shown in the _SEV_ column in the following table, where the
_SEV_ column is shown for illustration only; it is not added as a variable to the DATA= data set:

Obs replicateId age gender carType extCount _sev_
1 1 30 2 1 2 700 500
2 1 25 1 2 1 5000
3 1 45 2 2 3 900 1400 300
4 1 33 1 1 5 350 2000 150 800 600
5 1 50 1 1 1 250

The values of all 12 severity draws are added to compute and record the value of 12,950 as the first
point of the aggregate loss sample. Because you specify NREPLICATES=3 in the PROC HPCDM
step, this process of making 12 severity draws from the respective observations is repeated two more
times to generate a total of three sample points for the first replication.

2. The four observations of the second replication (ReplicateId=2) are analyzed next to draw three, two,
four, and one severity values from the severity distributions, with scale parameters that are decided by
the regressor values in the sixth, seventh, eighth, and ninth observations, respectively. The 10 severity
values are added to form a point of the aggregate loss sample. This process of making 10 severity
draws from the respective observations is repeated two more times to generate a total of three sample
points for the second replication.

If your Work.Counts2 data set contains 10,000 distinct values of ReplicateId, then 30,000 observations are
written to the Work.AggLoss data set that you specify in the OUTPUT statement of the preceding PROC
HPCDM step. Because you specify SAMPLEVAR=TotalLoss in the OUTPUT statement, the aggregate loss
sample is available in the TotalLoss column of the Work.AggLoss data set.
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Simulation of Adjusted Compound Distribution Sample
If you specify programming statements that adjust the severity value, then a separate adjusted compound
distribution sample is also generated.

Your programming statements are expected to implement an adjustment function f that uses the unadjusted
severity value, Xj , to compute and return an adjusted severity value, Xaj . To compute Xaj , you might also
use the sum of unadjusted severity values and the sum of adjusted severity values.

Formally, if N denotes the number of loss events that are to be simulated for the current replication of the
simulation process, then for the severity draw, Xj , of the jth loss event (j D 1; : : : ; N ), the adjusted severity
value is

Xaj D f .Xj ; Sj�1; S
a
j�1/

where Sj�1 D
Pj�1

lD1
Xl is the aggregate unadjusted loss before Xj is generated and Saj�1 D

Pj�1

lD1
Xa
l

is
the aggregate adjusted loss before Xj is generated. The initial values of both types of aggregate losses are set
to 0. In other words, S0 D 0 and Sa0 D 0.

The aggregate adjusted loss for the replication is SaN , which is denoted by Sa for simplicity, and is defined as

Sa D

NX
jD1

Xaj

In your programming statements that implement f, you can use the following keywords as placeholders for
the input arguments of the function f :

_SEV_
indicates the placeholder for Xj , the unadjusted severity value. PROC HPCDM generates this value as
described in the section “Simulation with No Regressors and No External Counts” on page 72 (step
2) or the section “Simulation with Regressors and No External Counts” on page 73 (step 3). PROC
HPCDM supplies this value to your program.

_CUMSEV_
indicates the placeholder for Sj�1, the sum of unadjusted severity values that PROC HPCDM generates
before Xj is generated. PROC HPCDM supplies this value to your program.

_CUMADJSEV_
indicates the placeholder for Saj�1, the sum of adjusted severity values that are computed by your
programming statements before Xj is generated and adjusted. PROC HPCDM supplies this value to
your program.

In your programming statements, you must assign the value of Xaj , the output of function f, to a symbol that
you specify in the ADJUSTEDSEVERITY= option in the PROC HPCDM statement. PROC HPCDM uses
the final assigned value of this symbol as the value of Xaj .

You can use most DATA step statements and functions in your program. The DATA step file and the data
set I/O statements (for example, INPUT, FILE, SET, and MERGE) are not available. However, some
functionality of the PUT statement is supported. For more information, see the section “PROC FCMP and
DATA Step Differences” in Base SAS Procedures Guide.
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The simulation process that generates the aggregate adjusted loss sample is identical to the process that is
described in the section “Simulation with Regressors and No External Counts” on page 73 or the section
“Simulation with External Counts” on page 75, except that after making each of the N severity draws, PROC
HPCDM executes your severity adjustment programming statements to compute the adjusted severity (Xaj ).
All the N adjusted severity values are added to compute Sa, which forms a point of the aggregate adjusted
loss sample. The process is illustrated using an example in the section “Illustration of Aggregate Adjusted
Loss Simulation Process” on page 82.

Using Severity Adjustment Variables

If you do not specify the DATA= data set, then your ability to adjust the severity value is limited, because you
can use only the current severity draw, sums of unadjusted and adjusted severity draws that are made before
the current draw, and some constant numbers to encode your adjustment policy. That is sufficient if you want
to estimate the distribution of aggregate adjusted loss for only one entity. However, if you are simulating a
scenario that contains more than one entity, then it might be more useful if the adjustment policy depends on
factors that are specific to each entity that you are simulating. To do that, you must specify the DATA= data
set and encode such factors as adjustment variables in the DATA= data set. Let A denote the set of values of
the adjustment variables. Then, the form of the adjustment function f that computes the adjusted severity
value becomes

Xaj D f .Xj ; Sj�1; S
a
j�1; A/

PROC HPCDM reads the values of adjustment variables from the DATA= data set and supplies the set of
those values (A) to your severity adjustment program. For an invocation of f with an unadjusted severity
value of Xj , the values in set A are read from the same observation that is used to simulate Xj .

All adjustment variables that you use in your program must be present in the DATA= data set. You must
not use any keyword for a placeholder symbol as a name of any variable in the DATA= data set, whether
the variable is a severity adjustment variable or a regressor in the frequency or severity model. Further, the
following restrictions apply to the adjustment variables:

• You can use only numeric-valued variables in PROC HPCDM programming statements. This restriction
also implies that you cannot use SAS functions or call routines that require character-valued arguments,
unless you pass those arguments as constant (literal) strings or characters.

• You cannot use functions that create lagged versions of a variable in PROC HPCDM programming
statements. If you need lagged versions, then you can use a DATA step before the PROC HPCDM step
to add those versions to the input data set.

The use of adjustment variables is illustrated using an example in the section “Illustration of Aggregate
Adjusted Loss Simulation Process” on page 82.
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Aggregate Adjusted Loss Simulation for a Multi-entity Scenario

If you are simulating a scenario that consists of multiple entities, then you can use some additional pieces of
information in your severity adjustment program. Let the scenario consist of K entities and let Nk denote the
number of loss events that are incurred by kth entity (k D 1; : : : ; K) in the current iteration of the simulation
process. The total number of severity draws that need to be made is N D

PK
kD1Nk . The aggregate adjusted

loss is now defined as

Sa D

KX
kD1

NkX
jD1

Xak;j

where Xa
k;j

is an adjusted severity value of the jth draw (j D 1; : : : ; Nk) for the kth entity, and the form of
the adjustment function f that computes Xa

k;j
is

Xak;j D f .Xk;j ; Sk;j�1; S
a
k;j�1; Sn�1; S

a
n�1; A/

where Xk;j is the value of the jth draw of unadjusted severity for the kth entity. Sk;j�1 D
Pj�1

lD1
Xk;l

and Sa
k;j�1

D
Pj�1

lD1
Xa
k;l

are the aggregate unadjusted loss and the aggregate adjusted loss, respectively,
for the kth entity before Xk;j is generated. The index n (n D 1; : : : ; N ) keeps track of the total number
of severity draws, across all entities, that are made before Xk;j is generated. So Sn�1 D

Pn�1
lD1 Xl and

San�1 D
Pn�1
lD1 X

a
l

are the aggregate unadjusted loss and aggregate adjusted loss, respectively, for all the
entities that are processed before Xk;j is generated. Note that Sn�1 and San�1 include the j � 1 draws that
are made for the kth entity before Xk;j is generated.

The initial values of all types of aggregate losses are set to 0. In other words, S0 D 0, Sa0 D 0, and for all
values of k, Sk;0 D 0 and Sa

k;0
D 0.

PROC HPCDM uses the final value that you assign to the ADJUSTEDSEVERITY= symbol in your pro-
gramming statements as the value of Xa

k;j
.

In your severity adjustment program, you can use the following two additional placeholder keywords:

_CUMSEVFOROBS_
indicates the placeholder for Sk;j�1, which is the total loss that is incurred by the kth entity before the
current loss event. PROC HPCDM supplies this value to your program.

_CUMADJSEVFOROBS_
indicates the placeholder for Sa

k;j�1
, which is the total adjusted loss that is incurred by the kth entity

before the current loss event. PROC HPCDM supplies this value to your program.

The previously described placeholder symbols _CUMSEV_ and _CUMADJSEV_ represent Sn�1 and San�1,
respectively. If you have only one entity in the scenario (K = 1), then the values of _CUMSEVFOROBS_ and
_CUMADJSEVFOROBS_ are identical to the values of _CUMSEV_ and _CUMADJSEV_, respectively.

There is one caveat when a scenario consists of more than one entity (K > 1) and when you use any of
the symbols for cumulative severity values (_CUMSEV_, _CUMADJSEV_, _CUMSEVFOROBS_, or
_CUMADJSEVFOROBS_) in your programming statements. In this case, to make the simulation realistic,
it is important to randomize the order of N severity draws across K entities. For more information, see the
section “Randomizing the Order of Severity Draws across Observations of a Scenario” on page 84.
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Illustration of Aggregate Adjusted Loss Simulation Process

This section continues the example in the section “Simulation with Regressors and No External Counts” on
page 73 to illustrate the simulation of aggregate adjusted loss.

Recall that the earlier example simulates a scenario that consists of five policyholders. Assume that you
want to compute the distribution of the aggregate amount paid to all the policyholders in a year, where the
payment for each loss is decided by a deductible and a per-payment limit. To begin with, you must record the
deductible and limit information in the input DATA= data set. The following table shows the DATA= data set
from the earlier example, extended to include two variables, Deductible and Limit:

Obs age gender carType deductible limit
1 30 2 1 250 5000
2 25 1 2 500 3000
3 45 2 2 100 2000
4 33 1 1 500 5000
5 50 1 1 200 2000

The variables Deductible and Limit are referred to as severity adjustment variables, because you need to use
them to compute the adjusted severity. Let AmountPaid represent the value of adjusted severity that you are
interested in. Further, let the following SAS programming statements encode your logic of computing the
value of AmountPaid:

amountPaid = MAX(_sev_ - deductible, 0);
amountPaid = MIN(amountPaid, MAX(limit - _cumadjsevforobs_, 0));

PROC HPCDM supplies your program with values of the placeholder symbols _SEV_ and _CUMADJ-
SEVFOROBS_, which represent the value of the current unadjusted severity draw and the sum of adjusted
severity values from the previous draws, respectively, for the observation that is being processed. The use of
_CUMADJSEVFOROBS_ helps you ensure that the payment that is made to a given policyholder in a year
does not exceed the limit that is recorded in the Limit variable.

In order to simulate a sample for the aggregate of AmountPaid, you need to submit a PROC HPCDM step
whose structure is like the following:

proc hpcdm data=<data set name> adjustedseverity=amountPaid
severityest=<severity parameter estimates data set>
countstore=<count model store>;

severitymodel <severity distribution name(s)>;

amountPaid = MAX(_sev_ - deductible, 0);
amountPaid = MIN(amountPaid, MAX(limit - _cumadjsevforobs_, 0));

run;

The simulation process of one replication that generates one point of the aggregate loss sample and the
corresponding point of the aggregate adjusted loss sample is as follows:

1. Use the values Age=30, Gender=2, and CarType=1 in the first observation to draw a count from the
count distribution. Let that count be 3. Repeat the process for the remaining four observations. Let the
counts be as shown in the Count column in the following table:
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Obs age gender carType deductible limit count
1 30 2 1 250 5000 2
2 25 1 2 500 3000 1
3 45 2 2 100 2000 2
4 33 1 1 500 5000 3
5 50 1 1 200 2000 0

Note that the Count column is shown for illustration only; it is not added as a variable to the DATA=
data set.

2. The simulated counts from all the observations are added to get a value of N = 8. This means that for
this particular replication, you expect a total of eight loss events in a year from these five policyholders.

3. For the first observation, the scale parameter of the severity distribution is computed by using the values
Age=30, Gender=2, and CarType=1. That value of the scale parameter is used together with estimates
of the other parameters from the SEVERITYEST= data set to make two draws from the severity
distribution. The process is repeated for the remaining four policyholders. The fifth policyholder does
not generate any loss event for this particular replication, so no severity draws are made by using the
fifth observation. Let the severity draws, rounded to integers for convenience, be as shown in the
_SEV_ column in the following table, where the _SEV_ column is shown for illustration only; it is not
added as a variable to the DATA= data set:

Obs age gender carType deductible limit count _sev_
1 30 2 1 250 5000 2 350 2100
2 25 1 2 500 3000 1 4500
3 45 2 2 100 2000 2 700 4300
4 33 1 1 200 5000 3 600 1500 950
5 50 1 1 200 2000 0

The sample point for the aggregate unadjusted loss is computed by adding the severity values of eight
draws, which gives an aggregate loss value of 15,000. The unadjusted aggregate loss is also referred to
as the ground-up loss.

For each of the severity draws, your severity adjustment programming statements are executed to
compute the adjusted severity, which is the value of AmountPaid in this case. For the draws in the
preceding table, the values of AmountPaid are as follows:

Obs deductible limit _sev_ _cumadjsevforobs_ amountPaid
1 250 5000 350 0 100
1 250 5000 2100 100 1850
2 500 3000 4500 0 3000
3 100 2000 700 0 600
3 100 2000 4300 600 1400
4 200 5000 600 0 400
4 200 5000 1500 400 1300
4 200 5000 950 1700 750

The adjusted severity values are added to compute the cumulative payment value of 9,400, which forms
the first sample point for the aggregate adjusted loss.

After recording the aggregate unadjusted and aggregate adjusted loss values in their respective samples,
the process returns to step 1 to compute the next sample point unless the specified number of sample
points have been simulated.



84 F Chapter 4: The HPCDM Procedure (Experimental)

In this particular example, you can verify that the order in which the 8 loss events are simulated does
not affect the aggregate adjusted loss. As a simple example, consider the following order of draws that
is different from the consecutive order that was used in the preceding table:

Obs deductible limit _sev_ _cumadjsevforobs_ amountPaid
4 200 5000 600 0 400
3 100 2000 4300 0 2000
1 250 5000 350 0 100
3 100 2000 700 2000 0
4 200 5000 950 400 750
1 250 5000 2100 100 1850
2 500 3000 4500 0 3000
4 200 5000 1500 1150 1300

Although the payments that are made for individual loss events differ, the aggregate adjusted loss is
still 9,400.

However, in general, when you use a cumulative severity value such as _CUMADJSEVFOROBS_
in your program, the order in which the draws are processed affects the final value of aggregate
adjusted loss. For more information, see the sections “Randomizing the Order of Severity Draws
across Observations of a Scenario” on page 84 and “Illustration of the Need to Randomize the Order
of Severity Draws” on page 85.

Randomizing the Order of Severity Draws across Observations of a Scenario

If you specify a scenario that consists of a group of more than one entity, then it is assumed that each entity
generates its loss events independently from other entities. In other words, the time at which the loss event
of one entity is generated or recorded is independent of the time at which the loss event of another entity is
generated or recorded. If entity k generates Nk loss events, then the total number of loss events for a group of
K entities is N D

PK
kD1Nk . To simulate the aggregate loss for this group, N severity draws are made and

aggregated to compute one point of the compound distribution sample. However, to honor the assumption of
independence among entities, the order of those N severity draws must be randomized across K entities such
that no entity is preferred over another.

The K entities are represented by K observations of the scenario in the DATA= data set. If you specify
external counts, the K observations correspond to the observations that have the same replication identifier
value. If you do not specify the external counts, then the K observations correspond to all the observations in
the BY group or in the entire DATA= set if you do not specify the BY statement.

The randomization process over K observations is implemented as follows. First, one of the K observations is
chosen at random and one severity value is drawn from the severity distribution implied by that observation,
then another observation is chosen at random and one severity value is drawn from its implied severity
distribution, and so on. In each step, the total number of events that are simulated for the selected observation
k is incremented by 1. When all Nk events for an observation k are simulated, observation k is retired and
the process continues with the remaining observations until a total of N severity draws are made. Let k.j /
denote a function that implements this randomization by returning an observation k (k D 1; : : : ; K) for the
jth draw (j D 1; : : : ; N ). The aggregate loss computation can then be formally written as

S D

NX
jD1

Xk.j /

where Xk.j / denotes the severity value that is drawn by using observation k.j /.
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If you do not specify a scale regression model for severity, then all severity values are drawn from the same
severity distribution. However, if you specify a scale regression model for severity, then the severity draw
is made from the severity distribution that is determined by the values of regressors in observation k. In
particular, the scale parameter of the distribution depends on the values of regressors in observation k. If
R.l/ denotes the scale regression model for observation l and XR.l/ denotes the severity value drawn from
scale regression model R.l/, then the aggregate loss computation can be formally written as

S D

NX
jD1

XR.k.j //

This randomization process is especially important in the context of simulating an adjusted compound
distribution sample when your severity adjustment program uses the aggregate adjusted severity observed so
far to adjust the next severity value. For an illustration of the need to randomize in such cases, see the next
section.

Illustration of the Need to Randomize the Order of Severity Draws
This section uses the example of the section “Illustration of Aggregate Adjusted Loss Simulation Process” on
page 82, but with the following PROC HPCDM step:

proc hpcdm data=<data set name> adjustedseverity=amountPaid
severityest=<severity parameter estimates data set>
countstore=<count model store>;

severitymodel <severity distribution name(s)>;

if (_cumadjsev_ > 15000) then
amountPaid = 0;

else do;
penaltyFactor = MIN(3, 15000/(15000 - _cumadjsev_));
amountPaid = MAX(0, _sev_ - deductible * penaltyFactor);

end;
run;

The severity adjustment statements in the preceding steps compute the value of AmountPaid by using the
following provisions in the insurance policy:

• There is a limit of 15,000 on the total amount that can be paid in a year to the group of policyholders
that is being simulated. The amount of payment for each loss event depends on the total amount of
payments before that loss event.

• The penalty for incurring more losses is imposed in the form of an increased deductible. In particular,
the deductible is increased by the ratio of the maximum cumulative payment (15,000) to the amount
that remains available to pay for future losses in the year. The factor by which the deductible can be
raised has a limit of three.

This example illustrates only step 3 of the simulation process, where randomization is done. It assumes
that step 2 of the simulation process is identical to the step 2 in the example in the section “Illustration of
Aggregate Adjusted Loss Simulation Process” on page 82. At the beginning of step 3, let the severity draws
from all the observations be as shown in the _SEV_ column in the following table:
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Obs age gender carType deductible count _sev_
1 30 2 1 250 2 350 2100
2 25 1 2 500 1 4500
3 45 2 2 100 2 700 4300
4 33 1 1 200 3 600 1500 950
5 50 1 1 200 0

If the order of these eight draws is not randomized, then all the severity draws for the first observation are
adjusted before all the severity draws of the second observation, and so on. The execution of the severity
adjustment program leads to the following sequence of values for AmountPaid:

Obs deductible _sev_ _cumadjsev_ penaltyFactor amountPaid
1 250 350 0 1 100
1 250 2100 100 1.0067 1848.32
2 500 4500 1948.32 1.1493 3925.36
3 100 700 5873.68 1.6436 535.64
3 100 4300 6409.32 1.7461 4125.39
4 200 600 10534.72 3 0
4 200 1500 10534.72 3 900
4 200 950 11434.72 3 350

The preceding sequence of simulating loss events results in a cumulative payment of 11,784.72.

If the sequence of draws is randomized over observations, then the computation of the cumulative payment
might proceed as follows for one instance of randomization:

Obs deductible _sev_ _cumadjsev_ penaltyFactor amountPaid
2 500 4500 0 1 4000
1 250 350 4000 1.3636 9.09
3 100 700 4009.09 1.3648 563.52
4 200 950 4572.61 1.4385 662.30
4 200 1500 5234.91 1.5361 1192.78
1 250 2100 6427.69 1.7498 1662.54
4 200 600 8090.24 2.1708 165.83
3 100 4300 8256.07 2.2242 4077.58

In this example, a policyholder is identified by the value in the Obs column. As the table indicates, PROC
HPCDM randomizes the order of loss events not only across policyholders but also across the loss events
that a given policyholder incurs. The particular sequence of loss events that is shown in the table results in a
cumulative payment of 12,333.65. This differs from the cumulative payment that results from the previously
considered nonrandomized sequence of loss events, which tends to penalize the fourth policyholder by
always processing her payments after all other payments, with a possibility of underestimating the total paid
amount. This comparison not only illustrates that the order of randomization affects the aggregate adjusted
loss sample but also corroborates the arguments about the importance of order randomization that are made
at the beginning of the section “Randomizing the Order of Severity Draws across Observations of a Scenario”
on page 84.
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Parameter Perturbation Analysis
It is important to realize that most of the parameters of the frequency and severity models are estimated
and there is uncertainty associated with the parameter estimates. Any compound distribution estimate
that is computed by using these uncertain parameter estimates is inherently uncertain. The aggregate loss
sample that is simulated by using the mean estimates of the parameters is just one possible sample from the
compound distribution. If information about parameter uncertainty is available, then it is recommended that
you conduct parameter perturbation analysis that generates multiple samples of the compound distribution,
in which each sample is simulated by using a set of perturbed parameter estimates. You can use the
NPERTURBEDSAMPLES= option in the PROC HPCDM statement to specify the number of perturbed
samples to be generated. The set of perturbed parameter estimates is created by making a random draw of
the parameter values from their joint probability distribution. If you specify NPERTURBEDSAMPLES=P,
then PROC HPCDM creates P sets of perturbed parameters and each set is used to simulate a full aggregate
sample. The summary analysis of P such aggregate loss samples results in a set of P estimates for each
summary statistic and percentile of the compound distribution. The mean and standard deviation of this set
of P estimates quantify the uncertainty that is associated with the compound distribution.

The parameter uncertainty information is available in the form of either the variance-covariance matrix of
the parameter estimates or standard errors of the parameters estimates. If the variance-covariance matrix
is available and is positive definite, then PROC HPCDM assumes that the joint probability distribution of
the parameter estimates is a multivariate normal distribution, N .�; †/, where the mean vector � is the set
of point parameter estimates and † is the variance-covariance matrix. If the variance-covariance matrix is
not available or is not positive definite, then PROC HPCDM assumes that each parameter has a univariate
normal distribution, N .�; �2/, where � is the point estimate of the parameter and � is the standard error of
the parameter estimate.

For severity models, the point parameter estimates are expected to be available in the SEVERITYEST=
data set in observations for which _TYPE_=‘EST’, the standard errors are expected to be available in the
SEVERITYEST= data set in observations for which _TYPE_=‘STDERR’, and the variance-covariance
matrix is expected to be available in the SEVERITYEST= data set in observations for which _TYPE_=‘COV’.
If you use the SEVERITY procedure to create the SEVERITYEST= data set, then you need to specify the
COVOUT option in the PROC SEVERITY statement to make the variance-covariance estimates available in
the SEVERITYEST= data set.

For the frequency model, you must use the COUNTREG procedure to create the COUNTSTORE= item store,
which always contains the point estimates, standard errors, and variance-covariance matrix of the parameters.

If you specify the ADJUSTEDSEVERITY= option in the PROC HPCDM statement, then a separate
perturbation analysis is conducted for the distribution of the aggregate adjusted loss.

Descriptive Statistics
This section provides computational details for the descriptive statistics that are computed for each aggregate
loss sample. You can also save these statistics in an OUTSUM= data set by specifying appropriate keywords
in the OUTSUM statement.
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This section gives specific details about the moment statistics. For more information about the methods of
computing percentile statistics, see the description of the PCTLDEF= option in the UNIVARIATE procedure
in the Base SAS Procedures Guide: Statistical Procedures.

Standard algorithms (Fisher 1973) are used to compute the moment statistics. The computational methods
that the HPCDM procedure uses are consistent with those that other SAS procedures use for calculating
descriptive statistics.

Mean

The sample mean is calculated as

Ny D

Pn
iD1 yi

n

where n is the size of the generated aggregate loss sample and yi is the ith value of the aggregate loss.

Standard Deviation

The standard deviation is calculated as

s D

vuut 1

d

nX
iD1

.yi � Ny/2

where n is the size of the generated aggregate loss sample, yi is the ith value of the aggregate loss, Ny is the
sample mean, and d is the divisor controlled by the VARDEF= option in the PROC HPCDM statement:

d D

�
n � 1 if VARDEF=DF (default)
n if VARDEF=N

Skewness

The sample skewness, which measures the tendency of the deviations to be larger in one direction than in the
other, is calculated as

1

ds

nX
iD1

�
yi � Ny

s

�3

where n is the size of the generated aggregate loss sample, yi is the ith value of the aggregate loss, Ny is the
sample mean, s is the sample standard deviation, and ds is the divisor controlled by the VARDEF= option in
the PROC HPCDM statement:

ds D

�
.n�1/.n�2/

n
if VARDEF=DF (default)

n if VARDEF=N

If VARDEF=DF, then n must be greater than 2.

The sample skewness can be positive or negative; it measures the asymmetry of the data distribution and

estimates the theoretical skewness
p
ˇ1 D �3�

� 3
2

2 , where �2 and �3 are the second and third central
moments. Observations that are normally distributed should have a skewness near zero.
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Kurtosis

The sample kurtosis, which measures the heaviness of tails, is calculated as in Table 4.2 depending on the
value that you specify in the VARDEF= option.

Table 4.2 Formulas for Kurtosis

VARDEF Value Formula

DF (default)
n.nC 1/

.n � 1/.n � 2/.n � 3/

nX
iD1

�
yi � Ny

s

�4
�

3.n � 1/2

.n � 2/.n � 3/

N
1

n

nX
iD1

�
yi � Ny

s

�4
� 3

In these formulas, n is the size of the generated aggregate loss sample, yi is the ith value of the aggregate loss,
Ny is the sample mean, and s is the sample standard deviation. If VARDEF=DF, then n must be greater than 3.

The sample kurtosis measures the heaviness of the tails of the data distribution. It estimates the adjusted
theoretical kurtosis denoted as ˇ2 � 3, where ˇ2 D

�4
�22

and �4 is the fourth central moment. Observations
that are normally distributed should have a kurtosis near zero.

Input Specification
PROC HPCDM accepts the DATA= and SEVERITYEST= data sets and the COUNTSTORE= item store as
input. This section details the information that they are expected to contain.

DATA= Data Set

If you specify the BY statement, then the DATA= data set must contain all the BY variables that you specify
in the BY statement and the data set must be sorted by the BY variables unless the BY statement includes the
NOTSORTED option.

If the severity models in the SEVERITYEST= data set contain any scale regressors, then all those regressors
must be present in the DATA= data set.

If you specify the programming statements to compute an aggregate adjusted loss, and if your specified
ADJUSTEDSEVERITY= symbol depends on severity adjustment variables, then the DATA= data set must
contain all such variables.

The rest of the contents of the DATA= data set depends on whether you specify the EXTERNALCOUNTS
statement. If you specify the EXTERNALCOUNTS statement, then the DATA= data set is expected to
contain the COUNT= and ID= variables that you specify in the EXTERNALCOUNTS statement. If you do
not specify the EXTERNALCOUNTS statement, then the DATA= data set must contain all the regressors,
including zero model regressors, that are present in the count model that the COUNTSTORE= item store
contains.
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You do not need to specify the DATA= data set if all the following conditions are true:

• You do not specify the BY statement.

• You specify a SEVERITYEST= data set such that none of the severity models are scale regression
models.

• You do not specify the EXTERNALCOUNTS statement.

• You specify a COUNTSTORE= item store such that the count model contains no count regressors.

• Your severity adjustment programming statements, if you specify any, do not use any external input.

SEVERITYEST= Data Set

The SEVERITYEST= data set is expected to contain the parameter estimates of the severity models. This is
a required data set; you must specify it whenever you use PROC HPCDM.

The SEVERITYEST= data set must have the same format as the OUTEST= data set that is created by
the SEVERITY procedure. For more information, see the description of the OUTEST= data set in the
SEVERITY procedure in the SAS/ETS User’s Guide.

If you specify the BY statement, then the SEVERITYEST= data set must contain all the BY variables that
you specify in the BY statement. If you do not specify the NOTSORTED option in the BY statement, then
the SEVERITYEST= data set must be sorted by the BY variables.

COUNTSTORE= Item Store

The COUNTSTORE= item store is expected to be created by using the STORE statement in the COUNTREG
procedure. You must specify the COUNTSTORE= item store when you do not specify the EXTERNAL-
COUNTS statement. For more information, see the description of the STORE statement in the COUNTREG
procedure in the SAS/ETS User’s Guide.

Output Data Sets
PROC HPCDM writes the output data sets that you specify in the OUT= option of the OUTPUT and
OUTSUM statements. The contents of these output data sets are described in the sections “OUTSAMPLE=
Data Set” on page 90 and “OUTSUM= Data Set” on page 91, respectively.

OUTSAMPLE= Data Set

The OUTSAMPLE= data set records the full sample of the aggregate loss and aggregate adjusted loss.

If you specify the BY statement, then the data are organized in BY groups and the data set contains variables
that you specify in the BY statement. In addition, the OUTSAMPLE= data set contains the following
variables:

_SEVERITYMODEL_
indicates the name of the severity distribution model.
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_COUNTMODEL_
indicates the name of the count model. If you specify the EXTERNALCOUNTS statement,
then the value of this variable is “_EXTERNAL_”. If you specify the COUNTSTORE=
option, then the value of this variable is “_COUNTSTORE_”.

<unadjusted sample variable>
indicates the value of the unadjusted aggregate loss. The name of this variable is the
value of the SAMPLEVAR= option in the OUTPUT statement. If you do not specify the
SAMPLEVAR= option, then the variable is named _AGGSEV_.

<adjusted sample variable>
indicates the value of the adjusted aggregate loss. This variable is created only when
you specify the programming statements and the ADJUSTEDSEVERITY= option in the
PROC HPCDM statement. The name of this variable is the value of the ADJSAMPLE-
VAR= option in the OUTPUT statement. If you do not specify the ADJSAMPLEVAR=
option, then the variable is named _AGGADJSEV_.

_DRAWID_ indicates the identifier for the perturbed sample. This variable is created only when you
specify the NPERTURBEDSAMPLES= option in the PROC HPCDM statement. The
value of this variable identifies the perturbed sample. A value of 0 for the _DRAWID_
variable indicates an unperturbed sample.

OUTSUM= Data Set

The OUTSUM= data set records the summary statistics and percentiles of the compound distributions of
aggregate loss and aggregate adjusted loss. Only the estimates that you request in the OUTSUM statement
are written to the OUTSUM= data set. For more information about the method of naming the variables that
correspond to the summary statistics or percentiles, see the description of the OUTSUM statement.

If you specify the BY statement, then the data are organized in BY groups and the data set contains variables
that you specify in the BY statement. In addition, the OUTSUM= data set contains the following variables:

_SEVERITYMODEL_
indicates the name of the severity distribution model.

_COUNTMODEL_
indicates the name of the count model. If you specify the EXTERNALCOUNTS statement,
then the value of this variable is “_EXTERNAL_”. If you specify the COUNTSTORE=
option, then the value of this variable is “_COUNTSTORE_”.

_SAMPLEVAR_
indicates the name of the aggregate loss sample. For an unadjusted sample, the value of
the variable is the value of the SAMPLEVAR= option that you specify in the OUTPUT
statement or the default value of “_AGGSEV_”. For an adjusted sample, the value of the
variable is the value of the ADJSAMPLEVAR= option that you specify in the OUTPUT
statement or the default value of “_AGGADJSEV_”.

_DRAWID_ indicates the identifier for the perturbed sample. This variable is created only when
you specify the NPERTURBEDSAMPLES= option in the PROC HPCDM statement.
The value of this variable identifies the perturbed sample. A value of 0 for _DRAWID_
indicates an unperturbed sample.
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Displayed Output
The HPCDM procedure optionally produces displayed output by using the Output Delivery System (ODS).
All output is controlled by the PRINT= option in the PROC HPCDM statement. Table 4.3 relates the PRINT=
options to ODS tables.

Table 4.3 ODS Tables Produced in PROC HPCDM

ODS Table Name Description Option

CompoundInfo Compound distribution
information

Default

DataSummary Input data summary Default
Percentiles Percentiles of the aggregate loss

sample
PRINT=PERCENTILES

PerformanceInfo Execution environment
information that pertains to the
computational performance

Default

PerturbedPctlSummary Perturbation analysis of
percentiles

PRINT=PERTURBSUMMARY and
NPERTURBEDSAMPLES > 0

PerturbedSummary Perturbation analysis of summary
statistics

PRINT=PERTURBSUMMARY and
NPERTURBEDSAMPLES > 0

SummaryStatistics Summary statistics of the
aggregate loss sample

PRINT=SUMMARYSTATISTICS

Timing Timing information for various
computational stages of the
procedure

DETAILS (PERFORMANCE
statement)

PRINT= Option

This section provides detailed descriptions of the tables that are displayed by using different PRINT= options.

• If you do not specify the PRINT= option and if you do not specify the NOPRINT or PRINT=NONE
options, then by default PROC HPCDM produces the CompoundInfo, DataSummary, and SummaryS-
tatistics ODS tables.

The “Compound Distribution Information” table (ODS name: CompoundInfo) displays the information
about the severity and count models.

The “Input Data Summary” table (ODS name: DataSummary) is displayed when you specify the
DATA= data set. The table displays the total number of observations and the valid number of
observations in the data set. If you specify the EXTERNALCOUNTS statement, then the table also
displays the number of replications and total number of loss events across all replications.

• If you specify PRINT=PERCENTILES, the “Percentiles” table (ODS name: Percentiles) is displayed
for the distribution of the aggregate loss. The table contains estimates of all the predefined percentiles
in addition to the percentiles that you request in the OUTSUM statement.
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If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then an addi-
tional table is displayed for the distribution of the aggregate adjusted loss. This table also contains
estimates of all the predefined percentiles in addition to the percentiles that you request in the OUTSUM
statement.

• If you specify PRINT=PERTURBSUMMARY, two tables are displayed for the distribution of the
aggregate loss. The “Perturbed Summary Statistics” table (ODS name: PerturbedSummary) displays
the summary of the effect of perturbing model parameters on the following five summary statistics
of the distribution: mean, standard deviation, variance, skewness, and kurtosis. The “Perturbed
Percentiles” table (ODS name: PerturbedPctlSummary) displays the perturbation summary for all the
predefined percentiles in addition to the percentiles that you request in the OUTSUM statement.

The tables are displayed only if you specify a value greater than 0 for the NPERTURBEDSAMPLES=
option.

If you specify a value of P for the NPERTURBEDSAMPLES= option, then for each summary statistic
and percentile, an average and standard error of the set of P values of that summary statistic or
percentile are displayed in the respective perturbation summary tables.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then additional
perturbation summary tables are displayed for the distribution of the aggregate adjusted loss.

• If you specify PRINT=SUMMARYSTATISTICS, the “Summary Statistics” table (ODS name: Sum-
maryStatistics) is displayed for the distribution of the aggregate loss. The table contains estimates of
the following summary statistics: the number of observations in the sample, maximum value in the
sample, minimum value in the sample, mean, median, standard deviation, interquartile range, variance,
skewness, and kurtosis.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then an addi-
tional table of summary statistics is displayed for the distribution of the aggregate adjusted loss.

Performance Information

The “Performance Information” table (ODS name: PerformanceInfo) is produced by default. It displays
information about the execution mode. For single-machine mode, the table displays the number of threads
that are used. For distributed mode, the table displays the grid mode (symmetric or asymmetric), the number
of compute nodes, and the number of threads per node.

If you specify the DETAILS option in the PERFORMANCE statement, PROC HPCDM also produces a
“Timing” table (ODS name: Timing) that displays elapsed times (absolute and relative) for the main tasks of
the procedure.

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide).

Before you create graphs, ODS Graphics must be enabled (for example, with the ODS GRAPHICS ON
statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” in that chapter.
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The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” in that chapter.

This section describes the use of ODS for creating graphics with the HPCDM procedure.

NOTE: If you request simulation of an aggregate loss sample of large size, either by specifying a large value
for the NREPLICATES= option or by including a large number of replicates in the DATA= data set that
you specify in conjunction with the EXTERNALCOUNTS statement, then it is recommended that you not
request any plots, because creating plots that have large numbers of points can require a very large amount
of hardware resources and can take a very long time. You can disable the generation of plots either by
submitting the ODS GRAPHICS OFF statement before submitting the PROC HPCDM step or by specifying
the PLOTS=NONE option in the PROC HPCDM statement. It is recommended that you request plots only
when the sample size is less than 100,000.

ODS Graph Names

PROC HPCDM assigns a name to each graph that it creates by using ODS. You can use these names to
selectively refer to the graphs. The names are listed in Table 4.4.

Table 4.4 ODS Graphics Produced by PROC HPCDM

ODS Graph Name Plot Description PLOTS= Option

ConditionalDensityPlot Conditional density plot CONDITIONALDENSITY
DensityPlot Probability density function plot DENSITY
EDFPlot Empirical distribution function plot EDF

Conditional Density Plot

The conditional density plot helps you visually analyze two or three regions of the compound distribution by
displaying a density function estimate that is conditional on the values of the aggregate loss that fall in those
regions. You can specify the region boundaries in terms of quantiles by using the LEFTQ= and RIGHTQ=
suboptions of the PLOTS=CONDITIONALDENSITY option. This is especially useful if you want to see the
distribution of aggregate loss values in the right- and left-tail regions.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then a separate set of
conditional density plots are displayed for the aggregate adjusted loss.

Probability Density Function Plot

The probability density function (PDF) plot shows the nonparametric estimates of the PDF of the aggregate
loss distribution. This plot includes histogram and kernel density estimates.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then a separate density
plot is displayed for the aggregate adjusted loss.

Empirical Distribution Function Plot

The empirical density function (EDF) plot shows the nonparametric estimate of the cumulative distribution
function of the aggregate loss distribution. You can specify the ALPHA= suboption of the PLOTS=EDF
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option to request that the upper and lower confidence limits be plotted for each EDF estimate. By default, the
confidence interval is not plotted.

If you specify the programming statements and the ADJUSTEDSEVERITY= symbol, then a separate EDF
plot is displayed for the aggregate adjusted loss.

Examples: HPCDM Procedure

Example 4.1: Estimating the Probability Distribution of Insurance Payments
The primary outcome of running PROC HPCDM is the estimate of the compound distribution of aggregate
loss, given the distributions of frequency and severity of the individual losses. This aggregate loss is often
referred to as the ground-up loss. If you are an insurance company or a bank, you are also interested in acting
on the ground-up loss by computing an entity that is derived from the ground-up loss. For example, you might
want to estimate the distribution of the amount that you are expected to pay for the losses or the distribution
of the amount that you can offload onto another organization, such as a reinsurance company. PROC HPCDM
enables you to specify a severity adjustment program, which is a sequence of SAS programming statements
that adjust the severity of the individual loss event to compute the entity of interest. Your severity adjustment
program can use external information that is recorded as variables in the observations of the DATA= data
set in addition to placeholder symbols for information that PROC HPCDM generates internally, such as
the severity of the current loss event (_SEV_) and the sum of the adjusted severity values of the events that
have been simulated thus far for the current sample point (_CUMADJSEV_). If you are doing a scenario
analysis such that a scenario contains more than one observation, then you can also access the cumulative
severity and cumulative adjusted severity for the current observation by using the _CUMSEVFOROBS_ and
_CUMADJSEVFOROBS_ symbols.

This example continues the example of the section “Scenario Analysis” on page 50 to illustrate how you can
estimate the distribution of the aggregate amount that is paid to a group of policyholders. Let the amount
that is paid to an individual policyholder be computed by using what is usually referred to as a disappearing
deductible (Klugman, Panjer, and Willmot 1998, Ch. 2). If X denotes the ground-up loss that a policyholder
incurs, d denotes the lower limit on the deductible, d 0 denotes the upper limit on the deductible, and u denotes
the limit on the total payments that are made to a policyholder in a year, then Y, the amount that is paid to the
policyholder for each loss event, is defined as follows:

Y D

8̂̂̂̂
<̂
ˆ̂̂:
0 X � d

d 0 X�d
d 0�d

d < X � d 0

X d 0 < X � u

u X > u

You can encode this logic by using a set of SAS programming statements.

Extend the Work.GroupOfPolicies data set in the example in the section “Scenario Analysis” on page 50 to
include the following three additional variables for each policyholder: LowDeductible to record d, HighDe-
ductible to record d 0, and Limit to record u. The data set contains the observations as shown in Output 4.1.1.
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Output 4.1.1 Scenario Analysis Data for Multiple Policyholders with Policy Provisions

policyholderId age gender carType annualMiles education carSafety income

1 1.18 2 1 2.2948 3 0.99532 1.59870

2 0.66 2 2 2.8148 1 0.05625 0.67539

3 0.82 1 2 1.6130 2 0.84146 1.05940

4 0.44 1 1 1.2280 3 0.14324 0.24110

5 0.44 1 1 0.9670 2 0.08656 0.65979

lowDeductible highDeductible limit annualLimit

400 1400 7500 10000

300 1300 2500 20000

100 1100 5000 10000

300 800 5000 20000

100 1100 5000 20000

The following PROC HPCDM step estimates the compound distributions of the aggregate loss and the
aggregate amount that is paid to the group of policyholders in the Work.GroupOfPolicies data set by using
the count model that is stored in the Work.CountregModel item store and the lognormal severity model that is
stored in the Work.SevRegEst data set:

/* Simulate the aggregate loss distribution and aggregate adjusted
loss distribution for the scenario with multiple policyholders */

proc hpcdm data=groupOfPolicies nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest
plots=(edf pdf) nperturbedSamples=50
adjustedseverity=amountPaid;

severitymodel logn;

if (_sev_ <= lowDeductible) then
amountPaid = 0;

else do;
if (_sev_ <= highDeductible) then

amountPaid = highDeductible *
(_sev_-lowDeductible)/(highDeductible-lowDeductible);

else
amountPaid = MIN(_sev_, limit); /* imposes per-loss payment limit */

end;
run;

The preceding step uses a severity adjustment program to compute the value of the symbol AmountPaid and
specifies that symbol in the ADJUSTEDSEVERITY= option in the PROC HPCDM step. The program is
executed for each simulated loss event. The PROC HPCDM supplies your program with the value of the
severity in the _SEV_ placeholder symbol.

The “Sample Summary Statistics” table in Output 4.1.2 shows the summary statistics of the compound
distribution of the aggregate ground-up loss. The “Adjusted Sample Summary Statistics” table shows the
summary statistics of the compound distribution of the aggregate AmountPaid. The average aggregate
payment is about 4,321, as compared to the average aggregate ground-up loss of 5,883.
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Output 4.1.2 Summary Statistics of Compound Distributions of the Total Loss and Total Amount Paid

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Compound Distribution Information

Severity Model Lognormal Distribution

Scale Model Regressors carType carSafety income

Count Model NegBin(p=2) Model in Item Store WORK.COUNTREGMODEL

Sample Summary Statistics

Mean 5883.4 Median 3281.0

Standard Deviation 7576.5 Interquartile Range 6878.1

Variance 57402878.5 Minimum 0

Skewness 3.05639 Maximum 107486.7

Kurtosis 15.80583 Sample Size 10000

Adjusted Sample Summary Statistics

Mean 4320.8 Median 2547.9

Standard Deviation 5321.9 Interquartile Range 5461.3

Variance 28322194.1 Minimum 0

Skewness 2.55004 Maximum 64697.4

Kurtosis 11.26066 Sample Size 10000

The perturbation summary of the distribution of AmountPaid is shown in Output 4.1.3. It shows that you
can expect to pay a median of 2,568˙ 270 to this group of five policyholders in a year. Also, if the 99.5th
percentile defines the worst case, then you can expect to pay 29,098˙ 2,881 in the worst-case.

Output 4.1.3 Perturbation Summary of the Total Amount Paid

Adjusted Sample Percentile
Perturbation Analysis

Percentile Estimate
Standard

Error

1 0 0

5 0 0

25 604.60948 126.17884

50 2568.4 270.29467

75 6126.0 579.35289

95 15245.7 1455.8

99 24920.6 2434.2

99.5 29097.7 2880.8

Number of Perturbed
Samples = 50

Size of Each Sample = 10000

The empirical distribution function (EDF) and probability density function plots of the aggregate adjusted
loss are shown in Output 4.1.4. Both plots indicate a heavy-tailed distribution of the total amount paid.
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Output 4.1.4 PDF and EDF Plots of the Compound Distribution of the Total Amount Paid

Now consider that, in the future, you want to modify the policy provisions to add a limit on the total amount
of payment that is made to an individual policyholder in one year and to impose a group limit of 50,000 on
the total amount of payments that are made to the group as a whole in one year. You can analyze the effects of
these modified policy provisions on the distribution of the aggregate paid amount by recording the individual
policyholder’s annual limit in the AnnualLimit variable of the input data set and then modifying your severity
adjustment program by using the placeholder symbols _CUMADJSEVFOROBS_ and _CUMADJSEV_ as
shown in the following PROC HPCDM step:

/* Simulate the aggregate loss distribution and aggregate adjusted
loss distribution for the modified set of policy provisions */

proc hpcdm data=groupOfPolicies nreplicates=10000 seed=13579 print=all
countstore=work.countregmodel severityest=work.sevregest
plots=none nperturbedSamples=50
adjustedseverity=amountPaid;

severitymodel logn;

if (_sev_ <= lowDeductible) then
amountPaid = 0;

else do;
if (_sev_ <= highDeductible) then

amountPaid = highDeductible *
(_sev_-lowDeductible)/(highDeductible-lowDeductible);

else
amountPaid = MIN(_sev_, limit); /* imposes per-loss payment limit */

/* impose policyholder's annual limit */
amountPaid = MIN(amountPaid, MAX(0,annualLimit - _cumadjsevforobs_));

/* impose group's annual limit */
amountPaid = MIN(amountPaid, MAX(0,50000 - _cumadjsev_));

end;
run;

The results of the perturbation analysis for these modified policy provisions are shown in Output 4.1.5. When
compared to the results of Output 4.1.3, the additional policy provisions of restricting the total payment to
the policyholder and the group have kept the median payment unchanged, but the provisions have reduced
the worst-case payment (99.5th percentile) to 22,881˙ 1,119 from 29,098˙ 2,881.
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Output 4.1.5 Perturbation Summary of the Total Amount Paid for Modified Policy Provisions

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

The HPCDM Procedure
Severity Model: Logn

Count Model: NegBin(p=2)

Adjusted Sample Percentile
Perturbation Analysis

Percentile Estimate
Standard

Error

0 0 0

1 0 0

5 0 0

25 604.60948 126.17884

50 2568.4 270.29467

75 6126.0 579.35289

95 13865.7 1135.7

99 20869.0 896.03211

99.5 22880.5 1118.9

Number of Perturbed
Samples = 50

Size of Each Sample = 10000

Example 4.2: Using Externally Simulated Count Data
The COUNTREG procedure enables you to estimate count regression models that are based on the most
commonly used discrete distributions, such as the Poisson, negative binomial (both p = 1 and p = 2), and
Conway-Maxwell-Poisson distributions. PROC COUNTREG also enables you to fit zero-inflated models
that are based on Poisson, negative binomial (p = 2), and Conway-Maxwell-Poisson distributions. However,
there might be situations in which you want to use some other method of fitting count regression models. For
example, if you are modeling the number of loss events that are incurred by two financial instruments such
that there is some dependency between the two, then you might use some multivariate frequency modeling
methods and simulate the counts for each instrument by using the dependency structure between the count
model parameters of the two instruments. As another example, you might want to use different types of count
models for different BY groups in your data; this is not possible in PROC COUNTREG in SAS/ETS 13.1
and earlier. So you need to simulate the counts for such BY groups externally. PROC HPCDM enables you
to supply externally simulated counts by using the EXTERNALCOUNTS statement. PROC HPCDM then
does not need to simulate the counts internally; it simulates only the severity of each loss event by using the
severity model estimates in the SEVERITYEST= data set. The process is described and illustrated in the
section “Simulation with External Counts” on page 75.

Consider that you are a bank, and as part of quantifying your operational risk, you want to estimate the
aggregate loss distributions for two lines of business, retail banking and commercial banking, by using some
key risk indicators (KRIs). Assume that your model fitting and model selection process has determined that
the Poisson regression model and negative binomial regression model are the best-fitting count models for
number of loss events that are incurred in the retail banking and commercial banking businesses, respectively.
Let CorpKRI1, CorpKRI2, CbKRI1, CbKRI2, and CbKRI3 be the KRIs that are used in the count regression
model of the commercial banking business, and let CorpKRI1, RbKRI1, and RbKRI2 be the KRIs that are
used in the count regression model of the retail banking business. Some examples of corporate-level KRIs
(CorpKRI1 and CorpKRI2 in this example) are the ratio of temporary to permanent employees and the
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number of security breaches that are reported during a year. Some examples of KRIs that are specific to the
commercial banking business (CbKRI1, CbKRI2, and CbKRI3 in this example) are number of credit defaults,
proportion of financed assets that are movable, and penalty claims against your bank because of processing
delays. Some examples of KRIs that are specific to the retail banking business (RbKRI1 and RbKRI2 in this
example) are number of credit cards that are reported stolen, fraction of employees who have not undergone
fraud detection training, and number of forged drafts and checks that are presented in a year.

Let the severity of each loss event in the commercial banking business be dependent on two KRIs, CorpKRI1
and CbKRI2. Let the severity of each loss event in the retail banking business be dependent on three KRIs,
CorpKRI2, RbKRI1, and RbKRI3. Note that for each line of business, the set of KRIs that are used for
the severity model is different from the set of KRIs that are used for the count model, although there is
some overlap between the two sets. Further, the severity model for retail banking includes a new regressor
(RbKRI3) that is not used for any of the count models. Such use of different sets of KRIs for count and
severity models is typical of real-world applications.

Let the parameter estimates of the negative binomial and Poisson regression models, as determined by
PROC COUNTREG, be available in the Work.CountEstEx2NB2 and Work.CountEstEx2Poisson data sets,
respectively. These data sets are produced by using the OUTEST= option in the respective PROC COUN-
TREG statements. Let the parameter estimates of the best-fitting severity models, as determined by PROC
SEVERITY, be available in the Work.SevEstEx2Best data set. You can find the code to prepare these data
sets in the PROC HPCDM sample program hcdmex02.sas.

Now, consider that you want to estimate the distribution of the aggregate loss for a scenario, which is
represented by a specific set of KRI values. The following DATA step illustrates one such scenario:

/* Generate a scenario data set for a single operating condition */
data singleScenario (keep=corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3

rbKRI1 rbKRI2 rbKRI3);
array x{8} corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3 rbKRI1 rbKRI2 rbKRI3;
call streaminit(5151);
do i=1 to dim(x);

x(i) = rand('NORMAL');
end;
output;

run;

The Work.SingleScenario data set contains all the KRIs that are included in the count and severity models of
both business lines. Note that if you standardize or scale the KRIs while fitting the count and severity models,
then you must apply the same standardization or scaling method to the values of the KRIs that you specify in
the scenario. In this particular example, all KRIs are assumed to be standardized.

The following DATA step uses the scenario in the Work.SingleScenario data set to simulate 10,000 replications
of the number of loss events that you might observe for each business line and writes the simulated counts to
the NumLoss variable of the Work.LossCounts1 data set:

/* Simulate multiple replications of the number of loss events that
you can expect in the scenario being analyzed */

data lossCounts1 (keep=line corpKRI1 corpKRI2 cbKRI2 rbKRI1 rbKRI3 numloss);
array cxR{3} corpKRI1 rbKRI1 rbKRI2;
array cbetaR{4} _TEMPORARY_;
array cxC{5} corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3;
array cbetaC{6} _TEMPORARY_;
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retain theta;
if _n_ = 1 then do;

call streaminit(5151);

* read count model estimates *;
set countEstEx2NB2(where=(line='CommercialBanking' and _type_='PARM'));
cbetaC(1) = Intercept;
do i=1 to dim(cxC);

cbetaC(i+1) = cxC(i);
end;
alpha = _Alpha;
theta = 1/alpha;

set countEstEx2Poisson(where=(line='RetailBanking' and _type_='PARM'));
cbetaR(1) = Intercept;
do i=1 to dim(cxR);

cbetaR(i+1) = cxR(i);
end;

end;

set singleScenario;
do iline=1 to 2;

if (iline=1) then line = 'CommercialBanking';
else line = 'RetailBanking';
do repid=1 to 10000;

nnz = 1;
maxtries = 5*nnz;
nc = 0; ntries = 0;
do while (nc < nnz and ntries < maxtries);

* draw from count distribution *;
if (iline=1) then do;

xbeta = cbetaC(1);
do i=1 to dim(cxC);

xbeta = xbeta + cxC(i) * cbetaC(i+1);
end;
Mu = exp(xbeta);
p = theta/(Mu+theta);
numloss = rand('NEGB',p,theta);

end;
else do;

xbeta = cbetaR(1);
do i=1 to dim(cxR);

xbeta = xbeta + cxR(i) * cbetaR(i+1);
end;
numloss = rand('POISSON', exp(xbeta));

end;
if (numloss > 0) then do;

output;
nc = nc + 1;

end;
ntries = ntries + 1;

end;
end;

end;
run;
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The Work.LossCounts1 data set contains the NumLoss variable in addition to the KRIs that are used by the
severity regression model, which are needed by PROC HPCDM to simulate the aggregate loss.

By default, PROC HPCDM computes an aggregate loss distribution by using each of the severity models that
you specify in the SEVERITYMODEL statement. However, you can restrict PROC HPCDM to use only a
subset of the severity models for a given BY group by modifying the SEVERITYEST= data set to include
only the estimates of the desired severity models in each BY group, as illustrated in the following DATA step:

/* Keep only the best severity model for each business line
and set coefficients of unused regressors in each model to 0 */

data sevestEx2Best;
set sevestEx2;
if ((line = 'CommercialBanking' and _model_ = 'Logn')) then do;

corpKRI2 = 0; rbKRI1 = 0; rbKRI3 = 0;
output;

end;
else if ((line = 'RetailBanking' and _model_ = 'Gamma')) then do;

corpKRI1 = 0; cbKRI2 = 0;
output;

end;
run;

Note that the preceding DATA step also sets the coefficients of the unused regressors in each model to 0. This
is important because PROC HPCDM uses all the regressors that it detects from the SEVERITYEST= data set
for each severity model.

Now, you are ready to estimate the aggregate loss distribution for each line of business by submitting the
following PROC HPCDM step, in which you specify the EXTERNALCOUNTS statement to request that
external counts in the NumLoss variable of the DATA= data set be used for simulation of the aggregate loss:

/* Estimate the distribution of the aggregate loss for both
lines of business by using the externally simulated counts */

proc hpcdm data=lossCounts1 seed=13579 print=all
severityest=sevestEx2Best;

by line;
externalcounts count=numloss;
severitymodel logn gamma;

run;

Each observation in the Work.LossCounts1 data set represents one replication of the external counts simula-
tion process. For each such replication, the preceding PROC HPCDM step makes as many severity draws
from the severity distribution as the value of the NumLoss variable and adds the severity values from those
draws to compute one sample point of the aggregate loss. The severity distribution that is used for making
the severity draws has a scale parameter value that is decided by the KRI values in the given observation and
the regression parameter values that are read from the Work.SevEstEx2Best data set.
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The summary statistics and percentiles of the aggregate loss distribution for the commercial banking business,
which uses the lognormal severity model, are shown in Output 4.2.1. The “Input Data Summary” table indi-
cates that each of the 9,954 observations in the BY group is treated as one replication and that there are a total
of 19,241 loss events produced by all the replications together. For the scenario in the Work.SingleScenario
data set, you can expect the commercial banking business to incur an average aggregate loss of 651 units, as
shown in the “Sample Summary Statistics” table, and the chance that the loss will exceed 4,337 units is 0.5%,
as shown in the “Sample Percentiles” table.

Output 4.2.1 Aggregate Loss Summary for Commercial Banking Business

The HPCDM ProcedureThe HPCDM Procedure

line=CommercialBanking

Input Data Summary

Name WORK.LOSSCOUNTS1

Observations 9954

Valid Observations 9954

Replications 9954

Total Count 19241

line=CommercialBanking

Sample Summary Statistics

Mean 651.00065 Median 418.36937

Standard Deviation 726.61443 Interquartile Range 653.67139

Variance 527968.5 Minimum 8.00493

Skewness 3.15153 Maximum 12726.4

Kurtosis 19.08843 Sample Size 9954

line=CommercialBanking

Sample Percentiles

Percentile Value

0 8.00493

1 29.52879

5 59.63848

25 188.00888

50 418.36937

75 841.68028

95 2037.3

99 3472.2

99.5 4337.0

Percentile
Method = 5

For the retail banking business, which uses the gamma severity model, the “Sample Percentiles” table in
Output 4.2.2 indicates that the median operational loss of that business is about 85 units and the chance that
the loss will exceed 344 units is about 1%.
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Output 4.2.2 Aggregate Loss Percentiles for Retail Banking Business

line=RetailBanking

Sample Percentiles

Percentile Value

0 1.19575

1 9.88436

5 19.76335

25 48.97570

50 84.78094

75 141.38838

95 250.92488

99 343.85721

99.5 381.70522

Percentile
Method = 5

When you conduct the simulation and estimation for a scenario that contains only one observation, you
assume that the operating environment does not change over the period of time that is being analyzed. That
assumption might be valid for shorter durations and stable business environments, but often the operating
environments change, especially if you are estimating the aggregate loss over a longer period of time. So you
might want to include in your scenario all the possible operating environments that you expect to see during
the analysis time period. Each environment is characterized by its own set of KRI values. For example, the
operating conditions might change from quarter to quarter, and you might want to estimate the aggregate loss
distribution for the entire year. You start the estimation process for such scenarios by creating a scenario
data set. The following DATA step creates the Work.MultiConditionScenario data set, which consists of four
operating environments, one for each quarter:

/* Generate a scenario data set for multiple operating conditions */
data multiConditionScenario (keep=opEnvId corpKRI1 corpKRI2

cbKRI1 cbKRI2 cbKRI3 rbKRI1 rbKRI2 rbKRI3);
array x{8} corpKRI1 corpKRI2 cbKRI1 cbKRI2 cbKRI3 rbKRI1 rbKRI2 rbKRI3;
call streaminit(5151);
do opEnvId=1 to 4;

do i=1 to dim(x);
x(i) = rand('NORMAL');

end;
output;

end;
run;

All four observations of the Work.MultiConditionScenario data set together form one scenario. When
simulating the external counts for such multi-entity scenarios, one replication consists of the possible number
of loss events that can occur as a result of each of the four operating environments. In any given replication,
some operating environments might not produce any loss event or all four operating environments might
produce some loss events. Assume that you use a DATA step to create the Work.LossCounts2 data set that
contains, for each business line, 10,000 replications of the loss counts and that you identify each replication
by using the RepId variable. You can find the DATA step code to prepare the Work.LossCounts2 data set in
the PROC HPCDM sample program hcdmex02.sas.
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Output 4.2.3 shows some observations of the Work.LossCounts2 data set for each business line. For the
first replication (RepId=1) of the commercial banking business, only operating environment 3 incurs two
loss events, whereas the other environments incur no loss events. For the second replication (RepId=2), all
operating environments incur at least one loss event. For the first replication (RepId=1) of the retail banking
business, operating environments 2, 3, and 4 incur four, one, and four loss events, respectively.

Output 4.2.3 Snapshot of the External Counts Data with Replication Identifier

line opEnvId corpKRI1 corpKRI2 cbKRI2 rbKRI1 rbKRI3 repid numloss

CommercialBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 1 2

CommercialBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 2 1

CommercialBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 2 3

CommercialBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 2 9

CommercialBanking 4 0.87499 -0.67812 -0.04839 -1.44881 0.78221 2 8

CommercialBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 3 5

CommercialBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 3 1

CommercialBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 3 2

RetailBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 1 4

RetailBanking 3 -0.29120 -0.45239 0.98855 -0.37208 -1.51534 1 1

RetailBanking 4 0.87499 -0.67812 -0.04839 -1.44881 0.78221 1 4

RetailBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 2 2

RetailBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 2 5

RetailBanking 4 0.87499 -0.67812 -0.04839 -1.44881 0.78221 2 3

RetailBanking 1 0.45224 0.40661 -0.33680 -1.08692 -2.20557 3 2

RetailBanking 2 -0.03799 0.98670 -0.03752 1.94589 1.22456 3 3

You can now use this simulated count data to estimate the distribution of the aggregate loss that is incurred in
all four operating environments by submitting the following PROC HPCDM step, in which you specify the
replication identifier variable RepId in the ID= option of the EXTERNALCOUNTS statement:

/* Estimate the distribution of the aggregate loss for both
lines of business by using the externally simulated counts
for the multiple operating environments */

proc hpcdm data=lossCounts2 seed=13579 print=all
severityest=sevestEx2Best plots=density;

by line;
distby repid;
externalcounts count=numloss id=repid;
severitymodel logn gamma;

run;

Note that when you specify the ID= variable in the EXTERNALCOUNTS statement, you must also specify
that variable in the DISTBY statement. Within each BY group, for each value of the RepId variable, one point
of the aggregate loss sample is simulated by using the process that is described in the section “Simulation
with External Counts” on page 75.

The summary statistics and percentiles of the distribution of the aggregate loss, which is the aggregate of the
losses across all four operating environments, are shown in Output 4.2.4 for the commercial banking business.
The “Input Data Summary” table indicates that there are 10,000 replications in the BY group and that a total
of 98,480 loss events are generated across all replications. The “Sample Percentiles” table indicates that you
can expect a median aggregate loss of 3,075 units and a worst-case loss, as defined by the 99.5th percentile,
of 13,150 units from the commercial banking business when you combine losses that result from all four
operating environments.
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Output 4.2.4 Aggregate Loss Summary for the Commercial Banking Business in Multiple Operating
Environments

The HPCDM ProcedureThe HPCDM Procedure

line=CommercialBanking

Input Data Summary

Name WORK.LOSSCOUNTS2

Observations 32526

Valid Observations 32526

Replications 10000

Total Count 98480

line=CommercialBanking

Sample Percentiles

Percentile Value

1 342.53328

5 792.48797

25 1876.8

50 3075.2

75 4694.6

95 8058.6

99 11575.4

99.5 13149.7

Percentile
Method = 5

The probability density functions of the aggregate loss for the commercial and retail banking businesses are
shown in Output 4.2.5. In addition to the difference in scales of the losses in the two businesses, you can see
that the aggregate loss that is incurred in the commercial banking business has a heavier right tail than the
aggregate loss that is incurred in the retail banking business.

Output 4.2.5 Density Plots of the Aggregate Losses for Commercial Banking (left) and Retail Banking
(right) Businesses
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Overview: HPCOPULA Procedure
The HPCOPULA procedure is a high-performance version of the SAS/ETS COPULA procedure, which
simulates data from a specified copula. Unlike the COPULA procedure, which can be run only on an
individual workstation, the HPCOPULA procedure takes advantage of a computing environment in which
the optimization task can be distributed to one or more nodes. In addition, each node can use one or more
threads to perform the optimization on its subset of the data. When several nodes are used and each node
uses several threads to carry out its part of the work, the result is a highly parallel computation that provides
a dramatic gain in performance.

You can use the HPCOPULA procedure to read and write data in distributed form and perform analyses
either in single-machine mode or in distributed mode. For more information about the execution mode of
SAS High-Performance Analytics procedures, see the section “Processing Modes” on page 10 in Chapter 3,
“Shared Concepts and Topics.”
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The HPCOPULA procedure is specifically designed to operate in the high-performance distributed environ-
ment. By default, PROC HPCOPULA performs computations in multiple threads.

PROC HPCOPULA Features
The HPCOPULA procedure enables you to simulate a specified copula, and it supports the following types
of copulas:

• normal copula

• t copula

• Archimedean copulas:

– Clayton copula

– Frank copula

– Gumbel copula

Getting Started: HPCOPULA Procedure
This example illustrates the use of PROC HPCOPULA. The data are daily returns on several major stocks.
The main purpose of this example is to simulate from the joint distribution of stock returns a new sample of a
specified size, provided that the parameter estimates of the copula model that is used are available.

In the following statements, the DEFINE statement specifies a normal copula named COP, and the
CORR= option specifies that the data set Estimates be used as the source for the model parameters. The
NDRAWS=1000000 option in the SIMULATE statement generates one million observations from the normal
copula. The OUTUNIFORM= option specifies the name of the SAS data set to contain the simulated
sample that has uniform marginal distributions. The PERFORMANCE statement requests that the analytic
computations use two nodes in the distributed computing environment and two threads in each node. Note
that this syntax does not require the DATA= option.

/* Copula simulation of uniforms */
proc hpcopula;

var ret_ibm ret_msft ret_bp ret_ko ret_duk;
define cop normal (corr = estimates);
simulate cop / ndraws = 1000000

outuniform = simulated_uniforms;
PERFORMANCE nodes=2 nthreads=2 details;

run;

The simulated data are contained in the new SAS data set, Simulated_Uniforms.
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Syntax: HPCOPULA Procedure
The following statements are available in the HPCOPULA procedure:

PROC HPCOPULA options ;
VAR variables ;
DEFINE name copula-type < ( parameter-value-options . . . ) > ;
SIMULATE < copula-name-list > / options ;

Functional Summary
Table 5.1 summarizes the statements and options that the HPCOPULA procedure uses.

Table 5.1 PROC HPCOPULA Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set that contains the correla-
tion matrix for elliptical copulas

DEFINE CORR=

Declaring the Role of Variables
Specifies the names of the variables to use in copula
fitting or in simulation

VAR

Copula Simulation Options
Specifies the random sample size SIMULATE NDRAWS=
Specifies the random number generator seed SIMULATE SEED=

Output Control Options
Specifies the output data set to contain the random
samples from the simulation with uniform marginal
distribution

SIMULATE OUTUNIFORM=

PROC HPCOPULA Statement
PROC HPCOPULA ;

The PROC HPCOPULA statement invokes the HPCOPULA procedure.

DEFINE Statement
DEFINE name copula-type < ( parameter-value-options ... ) > ;
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The DEFINE statement specifies the relevant information about the copula that is used for the simulation.
You can specify the following arguments:

name specifies the name of the copula definition. You can be use this name later in the
SIMULATE statement.

copula-type specifies the type of copula. You must specify one of the following copula types, which
are described in the section “Details: HPCOPULA Procedure” on page 114:

NORMAL fits the normal copula.

T fits the t copula.

CLAYTON fits the Clayton copula.

FRANK fits the Frank copula.

GUMBEL fits the Gumbel copula.

parameter-value-options
specify the input parameters that are used to simulate the specified copula. These options
must be appropriate for the type of copula specified. You can specify the following
parameter-value-options:

CORR=SAS-data-set
specifies the data set that contains the correlation matrix to use for elliptical copulas.
If the correlation matrix is valid but its elements are not submitted in order, then
you must provide the variable names in the first column of the matrix, and these
names must match the variable names in the VAR statement. See Output 5.1.1 for an
example of a correlation matrix input in this form. If the correlation matrix elements
are submitted in order, the first column of variable names is not required. You can
use this option for normal and t copulas.

DF=value
specifies the degrees of freedom. You can use this option for t copulas.

THETA=value
specifies the parameter value for the Archimedean copulas.

The DEFINE statement is used with the SIMULATE statement.

SIMULATE Statement
SIMULATE < copula-name-list >/options ;

The SIMULATE statement simulates data from a specified copula model. The copula name specification is
the name of a defined copula as specified by name in the DEFINE statement.

NDRAWS=integer
specifies the number of draws to generate for this simulation. By default, NDRAWS=100.
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OUTUNIFORM=SAS-data-set
specifies the output data set to contain the result of the simulation in uniform margins. You
can use this option when MARGINALS=UNIFORM or MARGINALS=EMPIRICAL. If
MARGINALS=EMPIRICAL, then this option enables you to obtain the samples that are simu-
lated from the joint distribution specified by the copula, where all marginal distributions are uniform.
The data are not created if you do not specify this option.

SEED=integer
specifies the seed for generating random numbers for the simulation. If you do not provide the seed, a
random number is used as the seed.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options to control the multithreaded and distributed
computing environment and requests detailed performance results of the HPCOPULA procedure. You can
also use the PERFORMANCE statement to control whether the HPCOPULA procedure executes in SMP or
MPP mode. You can specify the following performance-options:

DETAILS
requests a table that shows a timing breakdown of the PROC HPCOPULA steps.

NODES=n
specifies the number of nodes in the distributed computing environment, provided that the data are not
processed alongside the database.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPCOPULA
creates one thread per CPU for the analytic computations.

For more information about the PERFORMANCE statement, see the section “PERFORMANCE Statement”
on page 36 in Chapter 3, “Shared Concepts and Topics.”

VAR Statement
VAR variables ;

The VAR statement specifies the variable names in the input data set that is specified by the DATA= option in
the PROC HPCOPULA statement. The subset of variables in the data set is used for the copula models in
the FIT statement. If there is no input data set, the VAR statement creates the list of variable names for the
SIMULATE statement.
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Details: HPCOPULA Procedure

Sklar’s Theorem
The copula models are tools for studying the dependence structure of multivariate distributions. The usual
joint distribution function contains the information both about the marginal behavior of the individual random
variables and about the dependence structure between the variables. The copula is introduced to decouple the
marginal properties of the random variables and the dependence structures. An m-dimensional copula is a
joint distribution function on Œ0; 1�m, where all marginal distributions are standard uniform. The common
notation for a copula is C.u1; : : : ; um/.

The Sklar (1959) theorem shows the importance of copulas in modeling multivariate distributions. The first
part of the theorem states that a copula can be derived from any joint distribution functions, and the second
part asserts the opposite: that any copula can be combined with any set of marginal distributions to result in a
multivariate distribution function. The theorem follows:

• Let F be a joint distribution function, and let Fj ; j D 1; : : : ; m, be the marginal distributions. Then
there exists a copula C W Œ0; 1�m ! Œ0; 1� such that

F.x1; : : : ; xm/ D C.F1.x1/; : : : ; Fm.xm//

for all x1; : : : ; xm in Œ�1;1�. Moreover, if the margins are continuous, then C is unique; otherwise
C is uniquely determined on RanF1 � : : : � RanFm, where RanFj D Fj .Œ�1;1�/ is the range of
Fj .

• The converse is also true. That is, if C is a copula and F1; : : : ; Fm are univariate distribution functions,
then the multivariate function that is defined in the preceding equation is a joint distribution function
with marginal distributions Fj ; j D 1; : : : ; m.

Dependence Measures
There are three basic types of dependence measures: linear correlation, rank correlation, and tail dependence.
Linear correlation is given by

� � corr.X; Y / D
cov.X; Y /p

var.X/
p

var.Y /

The linear correlation coefficient contains very limited information about the joint properties of the variables.
A well-known property is that zero correlation does not imply independence, whereas independence implies
zero correlation. In addition, there are distinct bivariate distributions that have the same marginal distribution
and the same correlation coefficient. These results suggest that caution must be used in interpreting the linear
correlation.

Another statistical measure of dependence is rank correlation, which is nonparametric. For example, Kendall’s
tau is the covariance between the sign statistics X1 � QX1 and X2 � QX2, where . QX1; QX2/ is an independent
copy of .X1; X2/:

�� � EŒsign.X1 � QX1/.X2 � QX2/�
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The sign function (sometimes written as sgn) is defined as

sign.x/ D

8̂<̂
:
�1 ifx � 0
0 ifx D 0
1 ifx � 0

Spearman’s rho is the correlation between the transformed random variables:

�S .X1; X2/ � �.F1.X1/; F2.X2//

The variables are transformed by their distribution functions so that the transformed variables are uniformly
distributed on Œ0; 1�. The rank correlations depend only on the copula of the random variables and are
indifferent to the marginal distributions. Like linear correlation, rank correlation has its limitations. In
particular, different copulas result in the same rank correlation.

A third measure, tail dependence, focuses on only part of the joint properties between the variables. Tail
dependence measures the dependence when both variables have extreme values. Formally, they can be
defined as the conditional probabilities of quantile exceedances. There are two types of tail dependence:

• Upper tail dependence is defined as

�u.X1; X2/ � lim
q�>1�

P.X2 > F
�1
2 .q/jX1 > F

�1
1 .q//

when the limit exists and �u 2 Œ0; 1�. Here F�1j is the quantile function (that is, the inverse of the
CDF).

• Lower tail dependence is defined symmetrically.

Normal Copula
Let uj � U.0; 1/ for j D 1; : : : ; m, where U.0; 1/ represents the uniform distribution on the Œ0; 1� interval.
Let† be the correlation matrix, wherem.m�1/=2 parameters satisfy the positive semidefiniteness constraint.
The normal copula can be written as

C†.u1; u2; : : :um/ D ˆ†

�
ˆ�1.u1/; : : :ˆ

�1.um/
�

where ˆ is the distribution function of a standard normal random variable and ˆ† is the m-variate standard
normal distribution with mean vector 0 and covariance matrix †. That is, the distribution ˆ† is Nm.0;†/.

Simulation

For the normal copula, the input of the simulation is the correlation matrix †. The normal copula can be
simulated by the following steps, in which U D .U1; : : : ; Um/ denotes one random draw from the copula:

1. Generate a multivariate normal vector Z � N.0;†/, where † is an m-dimensional correlation matrix.

2. Transform the vector Z into U D .ˆ.Z1/; : : : ; ˆ.Zm//
T , where ˆ is the distribution function of

univariate standard normal.

The first step can be achieved by Cholesky decomposition of the correlation matrix † D LLT , where L is a
lower triangular matrix with positive elements on the diagonal. If QZ � N.0; I /, then L QZ � N.0;†/.
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Student’s t copula
Let ‚ D f.�;†/ W � 2 .1;1/; † 2 Rm�mg, and let t� be a univariate t distribution with � degrees of
freedom.

The Student’s t copula can be written as

C‚.u1; u2; : : :um/ D ttt�;†

�
t�1� .u1/; t

�1
� .u2/; : : :; t

�1
� .um/

�
where ttt�;† is the multivariate Student’s t distribution that has a correlation matrix † with � degrees of
freedom.

Simulation

The input parameters for the simulation are .�;†/. The t copula can be simulated by the following steps:

1. Generate a multivariate vector X � tm.�; 0;†/ that follows the centered t distribution with � degrees
of freedom and correlation matrix †.

2. Transform the vector X into U D .t�.X1/; : : : ; t�.Xm//
T , where t� is the distribution function of

univariate t distribution with � degrees of freedom.

To simulate centered multivariate t random variables, you can use the property that X � tm.�; 0;†/ if
X D

p
�=sZ , where Z � N.0;†/ and the univariate random variable s � �2� .

Archimedean Copulas

Overview of Archimedean Copulas

Let function � W Œ0; 1� ! Œ0;1/ be a strict Archimedean copula generator function, and suppose that its
inverse ��1 is completely monotonic on Œ0;1/. A strict generator is a decreasing function � W Œ0; 1� !
Œ0;1/ that satisfies �.0/ D1 and �.1/ D 0. A decreasing function f .t/ W Œa; b�! .�1;1/ is completely
monotonic if it satisfies

.�1/k
dk

dtk
f .t/ � 0; k 2 N; t 2 .a; b/

An Archimedean copula is defined as follows:

C.u1; u2; : : : ; um/ D �
�1
�
�.u1/C � � � C �.um/

�
The Archimedean copulas available in the HPCOPULA procedure are the Clayton copula, the Frank copula,
and the Gumbel copula.
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Clayton Copula

Let the generator function �.u/ D ��1
�
u�� � 1

�
. A Clayton copula is defined as

C� .u1; u2; : : :; um/ D

"
mX
iD1

u��i �mC 1

#�1=�
where � > 0.

Frank Copula

Let the generator function be

�.u/ D � log
�
exp.��u/ � 1
exp.��/ � 1

�
A Frank copula is defined as

C� .u1; u2; : : :; um/ D
1

�
log

�
1C

Qm
iD1Œexp.��ui / � 1�
Œexp.��/ � 1�m�1

�
where � 2 .�1;1/nf0g for m D 2 and � > 0 for m � 3.

Gumbel Copula

Let the generator function �.u/ D .� log u/� . A Gumbel copula is defined as

C� .u1; u2; : : :; um/ D exp

8<:�
"
mX
iD1

.� log ui /�
#1=�9=;

where � > 1.

Simulation

Suppose that the generator of the Archimedean copula is �. Then the simulation method that uses a
Laplace-Stieltjes transformation of the distribution function is given by Marshall and Olkin (1988), where
QF .t/ D

R1
0 e�txdF.x/:

1. Generate a random variable V that has the distribution function F such that QF .t/ D ��1.t/.

2. Draw samples from the independent uniform random variables X1; : : : ; Xm.

3. Return U D . QF .� log.X1/=V /; : : : QF .� log.Xm/=V //T .

The Laplace-Stieltjes transformations are as follows:

• For the Clayton copula, QF D .1C t /�1=� , and the distribution function F is associated with a gamma
random variable that has a shape parameter of ��1 and a scale parameter of 1.

• For the Gumbel copula, QF D exp.�t1=� /, and F is the distribution function of the stable variable
St.��1; 1; ; 0/, where  D Œcos.�=.2�//�� .
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• For the Frank copula where � > 0, QF D � logf1 � exp.�t /Œ1 � exp.��/�g=� , and F is a discrete
probability function P.V D k/ D .1 � exp.��//k=.k�/. This probability function is related to a
logarithmic random variable that has a parameter value of 1 � e�� .

For more information about simulating a random variable from a stable distribution, see Theorem 1.19 in
Nolan (2010). For more information about simulating a random variable from a logarithmic series, see
Chapter 10.5 in Devroye (1986).

For a Frank copula where m D 2 and � < 0, the simulation can be done through conditional distributions as
follows:

1 Draw independent v1; v2 from a uniform distribution.

2 Let u1 D v1.

3 Let u2 D �1� log
�
1C v2.1�e

�� /

v2.e
��v1�1/�e��v1

�
.

OUTUNIFORM= Data Sets
The number of columns and the names of columns in OUTUNIFORM= data sets match the number and
names of the variables in the VAR statement.

Examples: HPCOPULA Procedure

Example 5.1: Simulating Default Times
Suppose the correlation structure that is required for a normal copula function is already known. For example,
the correlation structure can be estimated from the historical data on default times in some industries, but this
estimation is not within the scope of this example. The correlation structure is saved in a SAS data set called
Inparm. The following statements and their output in Output 5.1.1 show that the correlation parameter is set
at 0.8:

proc print data = inparm;
run;

Output 5.1.1 Copula Correlation Matrix

Obs Y1 Y2

1 1.0 0.8

2 0.8 1.0

The following statements use PROC HPCOPULA to simulate the data:

option set=GRIDHOST="&GRIDHOST";
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option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

/* simulate the data from bivariate normal copula */
proc hpcopula;

var Y1-Y2;
define cop normal (corr=inparm);
simulate cop /

ndraws = 1000000
seed = 1234
outuniform = normal_unifdata;

PERFORMANCE nodes=4 nthreads=4 details
host="&GRIDHOST" install="&GRIDINSTALLLOC";

run;

The VAR statement specifies the list of variables that contains the simulated data. The DEFINE statement
assigns the name COP and specifies a normal copula that reads the correlation matrix from the Inparm data
set. The SIMULATE statement refers to the COP label that is defined in the VAR statement and specifies
several options: the NDRAWS= option specifies a sample size, the SEED= option specifies 1234 as the
random number generator seed, and the OUTUNIFORM=NORMAL_UNIFDATA option names the output
data set to contain the result of simulation in uniforms. The PERFORMANCE statement requests that the
analytic computations be performed on four nodes in the distributed computing environment and four threads
on each node. Output 5.1.2 shows the run time of this particular simulation experiment.

Output 5.1.2 Run-Time Performance

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 4

Number of Threads per Node 4

Procedure Task Timing

Task Seconds Percent

Simulation of Model 0.07 0.20%

Writing of output data 32.79 99.80%

The following DATA step transforms the variables from zero-one uniformly distributed to nonnegative
exponentially distributed with parameter 0.5 and adds three indicator variables to the data set: SURVIVE1
and SURVIVE2 are equal to 1 if company 1 or company 2, respectively, has remained in business for more
than three years, and SURVIVE is equal to 1 if both companies survived the same period together.

/* default time has exponential marginal distribution with parameter 0.5 */
data default;

set normal_unifdata;
array arr{2} Y1-Y2;
array time{2} time1-time2;
array surv{2} survive1-survive2;
lambda = 0.5;
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do i=1 to 2;
time[i] = -log(1-arr[i])/lambda;
surv[i] = 0;
if (time[i] >3) then surv[i]=1;

end;
survive = 0;
if (time1 >3) && (time2 >3) then survive = 1;

run;

The first analysis step is to look at correlations between survival times of the two companies. You can perform
this step by using the CORR procedure as follows:

proc corr data = default pearson kendall;
var time1 time2;

run;

Output 5.1.3 shows the output of this code. The output contains some descriptive statistics and two measures
of correlation: Pearson and Kendall. Both measures indicate high and statistically significant dependence
between the life spans of the two companies.

Output 5.1.3 Default Time Descriptive Statistics and Correlations

The CORR ProcedureThe CORR Procedure

2  Variables: time1    time2

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

time1 1000000 2.00042 1.99724 1.38664 1.78961E-6 28.39277

time2 1000000 2.00190 2.00064 1.38787 2.24931E-6 30.50949

Pearson Correlation Coefficients, N = 1000000
Prob > |r| under H0: Rho=0

time1 time2

time1 1.00000 0.76950
<.0001

time2 0.76950
<.0001

1.00000

Kendall Tau b Correlation Coefficients, N = 1000000
Prob > |tau| under H0: Tau=0

time1 time2

time1 1.00000 0.58998
<.0001

time2 0.58998
<.0001

1.00000

The second and final step is to empirically estimate the default probabilities of the two companies. This is
done by using the FREQ procedure as follows:

proc freq data=default;
table survive survive1-survive2;

run;

The results are shown in Output 5.1.4.
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Output 5.1.4 Probabilities of Default

The FREQ ProcedureThe FREQ Procedure

survive Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 852314 85.23 852314 85.23

1 147686 14.77 1000000 100.00

survive1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 776565 77.66 776565 77.66

1 223435 22.34 1000000 100.00

survive2 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

0 776382 77.64 776382 77.64

1 223618 22.36 1000000 100.00

Output 5.1.4 shows that the empirical default probabilities are 78% and 78%. Assuming that these companies
are independent yields the probability estimate that both companies default during the period of three years
as 0.75*0.78=0.59 (61%). Comparing this naive estimate with the much higher actual 85% joint default
probability illustrates that neglecting the correlation between the two companies significantly underestimates
the probability of default.
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Overview: HPCOUNTREG Procedure
The HPCOUNTREG procedure is a high-performance version of the COUNTREG procedure in SAS/ETS
software. Like the COUNTREG procedure, the HPCOUNTREG procedure fits regression models in which
the dependent variable takes on nonnegative integer or count values. Unlike the COUNTREG procedure,
which can be run only on an individual workstation, the HPCOUNTREG procedure takes advantage of a
computing environment that enables it to distribute the optimization task among one or more nodes. In
addition, each node can use one or more threads to carry out the optimization on its subset of the data. When
several nodes are employed, with each node using several threads to carry out its part of the work, the result
is a highly parallel computation that provides a dramatic gain in performance.

The HPCOUNTREG procedure enables you to read and write data in distributed form and perform analyses
in distributed mode and single-machine mode. For information about how to affect the execution mode of
SAS high-performance analytical procedures, see the section “Processing Modes” on page 10 in Chapter 3,
“Shared Concepts and Topics.”

The HPCOUNTREG procedure is specifically designed to operate in the high-performance distributed
environment. By default, PROC HPCOUNTREG performs computations in multiple threads.

PROC HPCOUNTREG Features
The HPCOUNTREG procedure estimates the parameters of a count regression model by maximum likelihood
techniques. The following list summarizes some basic features of the HPCOUNTREG procedure:

• can perform analysis on a massively parallel high-performance appliance

• reads input data in parallel and writes output data in parallel when the data source is the appliance
database

• is highly multithreaded during all phases of analytic execution

• performs maximum likelihood estimation

• supports multiple link functions

• uses the WEIGHT statement for weighted analysis

• uses the FREQ statement for grouped analysis

• uses the OUTPUT statement to produce a data set that contains predicted probabilities and other
observationwise statistics
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Getting Started: HPCOUNTREG Procedure
Except for its ability to operate in the high-performance distributed environment, the HPCOUNTREG
procedure is similar in use to other regression model procedures in the SAS System. For example, the
following statements are used to estimate a Poisson regression model:

proc hpcountreg data=one ;
model y = x / dist=poisson ;

run;

The response variable y is numeric and has nonnegative integer values.

This section illustrates two simple examples that use PROC HPCOUNTREG. The data are taken from Long
(1997). This study examines how factors such as gender (fem), marital status (mar), number of young
children (kid5), prestige of the graduate program (phd), and number of articles published by a scientist’s
mentor (ment) affect the number of articles (art) published by the scientist.

The first 10 observations are shown in Figure 6.1.

Figure 6.1 Article Count Data

Obs art fem mar kid5 phd ment

1 3 0 1 2 1.38000 8.0000

2 0 0 0 0 4.29000 7.0000

3 4 0 0 0 3.85000 47.0000

4 1 0 1 1 3.59000 19.0000

5 1 0 1 0 1.81000 0.0000

6 1 0 1 1 3.59000 6.0000

7 0 0 1 1 2.12000 10.0000

8 0 0 1 0 4.29000 2.0000

9 3 0 1 2 2.58000 2.0000

10 3 0 1 1 1.80000 4.0000

The following SAS statements estimate the Poisson regression model. The model is executed in the distributed
computing environment with two threads and four nodes.

/*-- Poisson Regression --*/
proc hpcountreg data=long97data;

model art = fem mar kid5 phd ment / dist=poisson method=quanew;
performance nthreads=2 nodes=4 details;

run;

The “Model Fit Summary” table that is shown in Figure 6.2 lists several details about the model. By
default, the HPCOUNTREG procedure uses the Newton-Raphson optimization technique. The maximum
log-likelihood value is shown, in addition to two information measures—Akaike’s information criterion
(AIC) and Schwarz’s Bayesian information criterion (SBC)—which can be used to compare competing
Poisson models. Smaller values of these criteria indicate better models.
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Figure 6.2 Estimation Summary Table for a Poisson Regression

The HPCOUNTREG ProcedureThe HPCOUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model Poisson

Log Likelihood -1651

Maximum Absolute Gradient 0.0002080

Number of Iterations 13

Optimization Method Quasi-Newton

AIC 3314

SBC 3343

Figure 6.3 shows the parameter estimates of the model and their standard errors. All covariates are significant
predictors of the number of articles, except for the prestige of the program (phd), which has a p-value of
0.6271.

Figure 6.3 Parameter Estimates of Poisson Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.3046 0.1030 2.96 0.0031

fem 1 -0.2246 0.05461 -4.11 <.0001

mar 1 0.1552 0.06137 2.53 0.0114

kid5 1 -0.1849 0.04013 -4.61 <.0001

phd 1 0.01282 0.02640 0.49 0.6271

ment 1 0.02554 0.002006 12.73 <.0001

To allow for variance greater than the mean, you can fit the negative binomial model instead of the Poisson
model by specifying the DIST=NEGBIN option, as shown in the following statements. Whereas the Poisson
model requires that the conditional mean and conditional variance be equal, the negative binomial model
allows for overdispersion, in which the conditional variance can exceed the conditional mean.

/*-- Negative Binomial Regression --*/
proc hpcountreg data=long97data;

model art = fem mar kid5 phd ment / dist=negbin(p=2) method=quanew;
performance nthreads=2 nodes=4 details;

run;

Figure 6.4 shows the fit summary and Figure 6.5 shows the parameter estimates.
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Figure 6.4 Estimation Summary Table for a Negative Binomial Regression

The HPCOUNTREG ProcedureThe HPCOUNTREG Procedure

Model Fit Summary

Dependent Variable art

Number of Observations 915

Data Set WORK.LONG97DATA

Model NegBin

Log Likelihood -1561

Maximum Absolute Gradient 0.0000666

Number of Iterations 16

Optimization Method Quasi-Newton

AIC 3136

SBC 3170

Figure 6.5 Parameter Estimates of Negative Binomial Regression

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.2561 0.1386 1.85 0.0645

fem 1 -0.2164 0.07267 -2.98 0.0029

mar 1 0.1505 0.08211 1.83 0.0668

kid5 1 -0.1764 0.05306 -3.32 0.0009

phd 1 0.01527 0.03604 0.42 0.6718

ment 1 0.02908 0.003470 8.38 <.0001

_Alpha 1 0.4416 0.05297 8.34 <.0001

The parameter estimate for _Alpha of 0.4416 is an estimate of the dispersion parameter in the negative
binomial distribution. A t test for the hypothesis H0 W ˛ D 0 is provided. It is highly significant, indicating
overdispersion (p < 0:0001).

The null hypothesis H0 W ˛ D 0 can be also tested against the alternative ˛ > 0 by using the likelihood ratio
test, as described by Cameron and Trivedi (1998, pp. 45, 77–78). The likelihood ratio test statistic is equal to
�2.LP � LNB/ D �2.�1651C 1561/ D 180, which is highly significant, providing strong evidence of
overdispersion.

Syntax: HPCOUNTREG Procedure
The following statements are available in the HPCOUNTREG procedure. Items within angle brackets (< >)
or square brackets ([ ]) are optional.
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PROC HPCOUNTREG <options> ;
BOUNDS bound1 [ , bound2 . . . ] ;
BY variables ;
FREQ freq-variable ;
INIT initialization1 < , initialization2 . . . > ;
MODEL dependent-variable = regressors </ options> ;
OUTPUT <output-options> ;
PERFORMANCE performance-options ;
RESTRICT restriction1 [, restriction2 . . . ] ;
WEIGHT variable </ option> ;
ZEROMODEL dependent-variable � zero-inflated-regressors </ options> ;

There can be only one MODEL statement. The ZEROMODEL statement, if used, must appear after the
MODEL statement. If a FREQ or WEIGHT statement is specified more than once, the variable specified in
the first instance is used.

Functional Summary
Table 6.1 summarizes the statements and options used with the HPCOUNTREG procedure.

Table 6.1 PROC HPCOUNTREG Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set HPCOUNTREG DATA=
Specifies the identification variable for panel data
analysis

HPCOUNTREG GROUPID=

Writes parameter estimates to an output data set HPCOUNTREG OUTEST=
Writes estimates to an output data set OUTPUT OUT=

Specifies BY-group processing BY
Specifies an optional frequency variable FREQ
Specifies an optional weight variable WEIGHT

Printing Control Options
Prints the correlation matrix of the estimates HPCOUNTREG CORRB
Prints the covariance matrix of the estimates HPCOUNTREG COVB
Suppresses the normal printed output HPCOUNTREG NOPRINT
Requests all printing options HPCOUNTREG PRINTALL

Options to Control the Optimization Process
Specifies maximum number of iterations allowed HPCOUNTREG MAXITER=
Selects the iterative minimization method to use HPCOUNTREG METHOD=
Specifies maximum number of iterations allowed HPCOUNTREG MAXITER=
Specifies maximum number of function calls HPCOUNTREG MAXFUNC=
Specifies the upper limit of CPU time in seconds HPCOUNTREG MAXTIME=
Specifies absolute function convergence criterion HPCOUNTREG ABSCONV=
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Description Statement Option

Specifies absolute function convergence criterion HPCOUNTREG ABSFCONV=
Specifies absolute gradient convergence criterion HPCOUNTREG ABSGCONV=
Specifies relative function convergence criterion HPCOUNTREG FCONV=
Specifies relative gradient convergence criterion HPCOUNTREG GCONV=
Specifies absolute parameter convergence criterion HPCOUNTREG ABSXCONV=
Specifies matrix singularity criterion HPCOUNTREG SINGULAR=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT

Model Estimation Options
Specifies the type of model HPCOUNTREG DIST=
Specifies the type of covariance matrix HPCOUNTREG COVEST=
Specifies the type of error components model for
panel data

MODEL ERRORCOMP=

Suppresses the intercept parameter MODEL NOINT
Specifies the offset variable MODEL OFFSET=
Specifies the zero-inflated offset variable ZEROMODEL OFFSET=
Specifies the zero-inflated link function ZEROMODEL LINK=

Output Control Options
Includes covariances in the OUTEST= data set HPCOUNTREG COVOUT
Includes correlations in the OUTEST= data set HPCOUNTREG CORROUT
Outputs SAS variables to the output data set OUTPUT COPYVAR=
Outputs probability of the actual value OUTPUT PROB=
Outputs expected value of response variable OUTPUT PRED=
Outputs estimates of XBetaD x0iˇ OUTPUT XBETA=
Outputs estimates of ZGammaD z0i OUTPUT ZGAMMA=
Outputs probability of a zero value as a result of the
zero-generating process

OUTPUT PROBZERO=

Performance Options
Requests a table that shows a timing breakdown PERFORMANCE DETAILS
Specifies the number of threads to use PERFORMANCE NTHREADS=
Specifies the number of nodes to use on the SAS
appliance

PERFORMANCE NODES=

PROC HPCOUNTREG Statement
PROC HPCOUNTREG <options> ;

The following options can be used in the PROC HPCOUNTREG statement.
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Input Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If the DATA= option is not specified, PROC HPCOUNTREG uses the
most recently created SAS data set.

GROUPID=variable
specifies an identification variable when a panel data model is estimated. The identification variable is
used as a cross-sectional ID variable.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to the specified output data set.

CORROUT
writes the correlation matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

Printing Options

You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement:

CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

NOPRINT
suppresses all printed output.

PRINTALL
requests all printing options.

Estimation Control Options

You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement:

COVEST=HESSIAN | OP | QML
specifies the type of covariance matrix for the parameter estimates.

The default is COVEST=HESSIAN. You can specify the following values:

HESSIAN specifies the covariance from the Hessian matrix.

OP specifies the covariance from the outer product matrix.

QML specifies the covariance from the outer product and Hessian matrices.
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Optimization Control Options

PROC HPCOUNTREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement.

ABSCONV=r

ABSTOL=r
specifies an absolute function value convergence criterion by which minimization stops when
f .� .k// � r . The default value of r is the negative square root of the largest double-precision
value, which serves only as a protection against overflows.

ABSFCONV=r

ABSFTOL=r
specifies an absolute function difference convergence criterion by which minimization stops when the
function value has a small change in successive iterations:

jf .� .k�1// � f .� .k//j � r

The default is 0.

ABSGCONV=r

ABSGTOL=r
specifies an absolute gradient convergence criterion. Optimization stops when the maximum absolute
gradient element is small:

max
j
jgj .�

.k//j � r

The default is 1E–5.

ABSXCONV=r

ABSXTOL=r
specifies an absolute parameter convergence criterion. Optimization stops when the Euclidean distance
between successive parameter vectors is small:

k � .k/ � � .k�1/ k2� r

The default is 0.

FCONV=r

FTOL=r
specifies a relative function convergence criterion. Optimization stops when a relative change of the
function value in successive iterations is small:

jf .� .k// � f .� .k�1//j

jf .� .k�1//j
� r

The default value is 2�, where � denotes the machine precision constant, which is the smallest double-
precision floating-point number such that 1C � > 1.
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GCONV=r

GTOL=r
specifies a relative gradient convergence criterion. For all techniques except CONGRA, optimization
stops when the normalized predicted function reduction is small:

g.� .k//T ŒH .k/��1g.� .k//

jf .� .k//j
� r

For the CONGRA technique (where a reliable Hessian estimate H is not available), the following
criterion is used:

k g.� .k// k22 k s.� .k// k2

k g.� .k// � g.� .k�1// k2 jf .� .k//j
� r

The default is 1E–8.

MAXFUNC=i

MAXFU=i
specifies the maximum number of function calls in the optimization process. The default is 1,000.

The optimization can terminate only after completing a full iteration. Therefore, the number of function
calls that are actually performed can exceed the number of calls that are specified by this option.

MAXITER=i

MAXIT=i
specifies the maximum number of iterations in the optimization process. The default is 200.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The default value is
the largest floating-point double representation of your computer. The time that is specified by this
option is checked only once at the end of each iteration. Therefore, the actual run time can be much
longer than r . The actual run time includes the remaining time needed to finish the iteration and the
time needed to generate the output of the results.

METHOD=value

specifies the iterative minimization method to use. The default is METHOD=NEWRAP. You can
specify the following values:

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double-dogleg method.

NEWRAP specifies the Newton-Raphson method (this is the default).

NONE specifies that no optimization be performed beyond using the ordinary least squares
method to compute the parameter estimates.

NRRIDG specifies the Newton-Raphson Ridge method.

QUANEW specifies the quasi-Newton method.

TRUREG specifies the trust region method.
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SINGULAR=r
specifies the general singularity criterion that is applied by the HPCOUNTREG procedure in sweeps
and inversions. The default is 1E–8.

BOUNDS Statement
BOUNDS bound1 [, bound2 . . . ] ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. You can specify
any number of BOUNDS statements.

Each bound is composed of parameter names, constants, and inequality operators as follows:

item operator item [ operator item [ operator item . . . ] ]

Each item is a constant, a parameter name, or a list of parameter names. Each operator is <, >, <=, or >=.
Parameter names are as shown in the Effect column of the “Parameter Estimates” table.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints.
However, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. For
more information, see the section “RESTRICT Statement” on page 137.

The following BOUNDS statement illustrates the use of parameter lists to specify boundary constraints.
It constrains the estimates of the parameter for z to be negative, the parameters for x1 through x10 to be
between 0 and 1, and the parameter for x1 in the zero-inflation model to be less than 1.

bounds z < 0,
0 < x1-x10 < 1,
Inf_x1 < 1;

BY Statement
BY variables ;

A BY statement can be used with PROC HPCOUNTREG to obtain separate analyses on observations in
groups defined by the BY variables. When a BY statement appears, the input data set should be sorted in
order of the BY variables.

BY statement processing is not supported when the HPCOUNTREG procedure runs alongside the database
or alongside the Hadoop Distributed File System (HDFS). These modes are used if the input data are stored
in a database or HDFS and the grid host is the appliance that houses the data.

FREQ Statement
FREQ freq-variable ;

The FREQ statement identifies a variable (freq-variable) that contains the frequency of occurrence of each
observation. PROC HPCOUNTREG treats each observation as if it appears n times, where n is the value
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of freq-variable for the observation. If the value for the observation is not an integer, it is truncated to an
integer. If the value is less than 1 or missing, the observation is not used in the model fitting. When the FREQ
statement is not specified, each observation is assigned a frequency of 1.

INIT Statement
INIT initialization1 < , initialization2 . . . > ;

The INIT statement sets initial values for parameters in the optimization.

Each initialization is written as a parameter or parameter list, followed by an optional equal sign (=), followed
by a number:

parameter <=> number

Parameter names are as shown in the Effect column of the “Parameter Estimates” table.

MODEL Statement
MODEL dependent-variable = regressors </ options> ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model. The dependent count variable should take only nonnegative integer values from the input data
set. PROC HPCOUNTREG rounds any positive noninteger count value to the nearest integer. PROC
HPCOUNTREG discards any observation that has a negative count.

Only one MODEL statement can be specified. You can specify the following options in the MODEL
statement after a slash (/).

DIST=value
specifies a type of model to be analyzed. You can specify the following values:

POISSON | P specifies the Poisson regression model.

NEGBIN(P=1) specifies the negative binomial regression model that uses a linear variance function.

NEGBIN(P=2) | NEGBIN specifies the negative binomial regression model that uses a quadratic
variance function.

ZIPOISSON | ZIP specifies zero-inflated Poisson regression.

ZINEGBIN | ZINB specifies zero-inflated negative binomial regression.

You can also specify the DIST option in the HPCOUNTREG statement.

ERRORCOMP=FIXED | RANDOM
specifies a type of conditional panel model to be analyzed. You can specify the following model types:

FIXED specifies a fixed-effect error component regression model.

RANDOM specifies a random-effect error component regression model.
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NOINT
suppresses the intercept parameter.

OFFSET=offset-variable
specifies a variable in the input data set to be used as an offset variable. The offset-variable is used to
allow the observational units to vary across observations. For example, when the number of shipping
accidents could be measured across different time periods or the number of students who participate in
an activity could be reported across different class sizes, the observational units need to be adjusted
to a common denominator by using the offset variable. The offset variable appears as a covariate in
the model with its parameter restricted to 1. The offset variable cannot be the response variable, the
zero-inflation offset variable (if any), or any of the explanatory variables. The “Model Fit Summary”
table gives the name of the data set variable that is used as the offset variable; it is labeled “Offset.”

Printing Options

You can specify the following options in either the PROC HPCOUNTREG statement or the MODEL
statement:

CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

NOPRINT
suppresses all printed output.

PRINTALL
requests all printing options.

OUTPUT Statement
OUTPUT < output-options > ;

The OUTPUT statement creates a new SAS data set that includes variables created by the output-options.
These variables include the estimates of x0iˇ, the expected value of the response variable, and the probability
of the response variable taking on the current value. Furthermore, if a zero-inflated model was fit, you can
request that the output data set contain the estimates of z0i and the probability that the response is zero
as a result of the zero-generating process. These statistics can be computed for all observations in which
the regressors are not missing, even if the response is missing. By adding observations that have missing
response values to the input data set, you can compute these statistics for new observations or for settings of
the regressors that are not present in the data without affecting the model fit.

You can specify only one OUTPUT statement. You can specify the following output-options:

OUT=SAS-data-set
names the output data set
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COPYVAR=SAS-variable-names

COPYVARS=SAS-variable-names
adds SAS variables to the output data set.

PRED=name
names the variable to contain the predicted value of the response variable.

PROB=name
names the variable to contain the probability that the response variable will take the actual value,
Pr(Y D yi ).

PROBCOUNT(value1 < value2 . . . >)
outputs the probability that the response variable will take particular values. Each value should be a
nonnegative integer. Nonintegers are rounded to the nearest integer. For value, you can also specify a
list of the form X TO Y BY Z. For example, PROBCOUNT(0 1 2 TO 10 BY 2 15) requests predicted
probabilities for the counts 0, 1, 2, 4, 5, 6, 8, 10, and 15. This option is not available for the fixed- and
random-effects panel models.

PROBZERO=name
names the variable to contain the value of 'i , which is the probability that the response variable will
take the value of 0 as a result of the zero-generating process. This variable is written to the output file
only if the model is zero-inflated.

XBETA=name
names the variable to contain estimates of x0iˇ.

ZGAMMA=name
names the variable to contain estimates of z0i .

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies options to control the multithreaded and distributed computing
environment and requests detailed results about the performance characteristics of the HPCOUNTREG
procedure. You can also use the PERFORMANCE statement to control whether the HPCOUNTREG
procedure executes in single-machine or distributed mode. The most commonly used performance-options
in the PERFORMANCE statement are as follows:

DETAILS
requests a table that shows a timing breakdown of the procedure steps.

NODES=n
specifies the number of nodes in the distributed computing environment, provided that the data are not
processed alongside the database.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPCOUNTREG
creates one thread per CPU for the analytic computations.
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For more information about the PERFORMANCE statement for high-performance analytical procedures, see
the section “PERFORMANCE Statement” on page 36 of Chapter 3, “Shared Concepts and Topics.”

RESTRICT Statement
RESTRICT restriction1 [, restriction2 . . . ] ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=) and then by a second expression, as follows:

expression operator expression

The operator can be =, <, >, <=, or >=.

Restriction expressions can be composed of parameter names, constants, and the following operators: times
(�), plus (C), and minus (�). Parameter names are as shown in the Effect column of the “Parameter Estimates”
table. The restriction expressions must be a linear function of the variables.

Lagrange multipliers are reported in the “Parameter Estimates” table for all the active linear constraints. They
are identified by the names Restrict1, Restrict2, and so on. The probabilities of these Lagrange multipliers
are computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) restrictions have no effect
on the estimation results and are not noted in the output.

The following RESTRICT statement constrains the negative binomial dispersion parameter ˛ to 1, which
restricts the conditional variance to be �C �2:

restrict _Alpha = 1;

WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable to supply weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.

The following option can be added to the WEIGHT statement after a slash (/).

NONORMALIZE
does not normalize the weights. (By default, the weights are normalized so that they add up to the
actual sample size. The weights wi are normalized by multiplying them by nPn

iD1wi
, where n is the

sample size.) If the weights are required to be used as they are, then specify the NONORMALIZE
option.
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ZEROMODEL Statement
ZEROMODEL dependent-variable � zero-inflated-regressors < / options > ;

The ZEROMODEL statement is required if either ZIP or ZINB is specified in the DIST= option in the
MODEL statement. If ZIP or ZINB is specified, then the ZEROMODEL statement must follow the MODEL
statement. The dependent variable in the ZEROMODEL statement must be the same as the dependent
variable in the MODEL statement.

The zero-inflated (ZI) regressors appear in the equation that determines the probability ('i ) of a zero count.
Each of these q variables has a parameter to be estimated in the regression. For example, let z0i be the ith
observation’s 1 � .q C 1/ vector of values of the q ZI explanatory variables (w0 is set to 1 for the intercept
term). Then 'i is a function of z0i , where  is the .q C 1/ � 1 vector of parameters to be estimated. (The
zero-inflated intercept is 0; the coefficients for the q zero-inflated covariates are 1; : : : ; q .) If q is equal to
0 (no ZI explanatory variables are provided), then only the intercept term 0 is estimated. The “Parameter
Estimates” table in the displayed output shows the estimates for the ZI intercept and ZI explanatory variables;
they are labeled with the prefix “Inf_”. For example, the ZI intercept is labeled “Inf_intercept”. If you specify
Age (a variable in your data set) as a ZI explanatory variable, then the “Parameter Estimates” table labels the
corresponding parameter estimate “Inf_Age”.

You can specify the following options in the ZEROMODEL statement after a slash (/):

LINK=LOGISTIC | NORMAL
specifies the distribution function used to compute probability of zeros. The supported distribution
functions are as follows:

LOGISTIC specifies logistic distribution.

NORMAL specifies standard normal distribution.

If this option is omitted, then the default ZI link function is logistic.

OFFSET=zero-inflated-offset-variable
specifies a variable in the input data set to be used as a zero-inflated (ZI) offset variable. The ZI
offset variable zero-inflated-offset-variable is included as a term, with coefficient restricted to 1, in
the equation that determines the probability ('i ) of a zero count and represents an adjustment to a
common observational unit. The ZI offset variable cannot be the response variable, the offset variable
(if any), or any of the explanatory variables. The name of the data set variable that is used as the ZI
offset variable is displayed in the “Model Fit Summary” table, where it is labeled as “Inf_offset”.

Details: HPCOUNTREG Procedure

Missing Values
Any observations in the input data set that have a missing value for one or more of the regressors are ignored
by PROC HPCOUNTREG and not used in the model fit. PROC HPCOUNTREG rounds any positive
noninteger count values to the nearest integer and ignores any observations that have a negative count.
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If the input data set contains any observations that have missing response values but nonmissing regressors,
PROC HPCOUNTREG can compute several statistics and store them in an output data set by using the
OUTPUT statement. For example, you can request that the output data set contain the estimates of x0iˇ, the
expected value of the response variable, and the probability that the response variable will take the current
value. Furthermore, if a zero-inflated model was fit, you can request that the output data set contain the
estimates of z0i , and the probability that the response is 0 as a result of the zero-generating process. Note
that the presence of such observations (that have missing response values) does not affect the model fit.

Poisson Regression
The most widely used model for count data analysis is Poisson regression. Poisson regression assumes that
yi , given the vector of covariates xi , is independently Poisson distributed with

P.Yi D yi jxi / D
e��i�

yi
i

yi Š
; yi D 0; 1; 2; : : :

and the mean parameter—that is, the mean number of events per period—is given by

�i D exp.x0iˇ/

where ˇ is a .k C 1/ � 1 parameter vector. (The intercept is ˇ0; the coefficients for the k regressors are
ˇ1; : : : ; ˇk .) Taking the exponential of x0iˇ ensures that the mean parameter �i is nonnegative. It can be
shown that the conditional mean is given by

E.yi jxi / D �i D exp.x0iˇ/

Note that the conditional variance of the count random variable is equal to the conditional mean in the Poisson
regression model:

V.yi jxi / D E.yi jxi / D �i

The equality of the conditional mean and variance of yi is known as equidispersion.

The standard estimator for the Poisson model is the maximum likelihood estimator (MLE). Because the
observations are independent, the log-likelihood function is written as

L D
NX
iD1

.��i C yi ln�i � lnyi Š/ D
NX
iD1

.�ex
0
i
ˇ
C yix0iˇ � lnyi Š/

For more information about the Poisson regression model, see the section “Poisson Regression” (Chapter 11,
SAS/ETS User’s Guide).

The Poisson model has been criticized for its restrictive property that the conditional variance equals the
conditional mean. Real-life data are often characterized by overdispersion—that is, the variance exceeds the
mean. Allowing for overdispersion can improve model predictions because the Poisson restriction of equal
mean and variance results in the underprediction of zeros when overdispersion exists. The most commonly
used model that accounts for overdispersion is the negative binomial model.
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Negative Binomial Regression
The Poisson regression model can be generalized by introducing an unobserved heterogeneity term for
observation i. Thus, the individuals are assumed to differ randomly in a manner that is not fully accounted
for by the observed covariates. This is formulated as

E.yi jxi ; �i / D �i�i D ex
0
i
ˇC�i

where the unobserved heterogeneity term �i D e
�i is independent of the vector of regressors xi . Then the

distribution of yi conditional on xi and �i is Poisson with conditional mean and conditional variance �i�i :

f .yi jxi ; �i / D
exp.��i�i /.�i�i /yi

yi Š

Let g.�i / be the probability density function of �i . Then, the distribution f .yi jxi / (no longer conditional on
�i ) is obtained by integrating f .yi jxi ; �i / with respect to �i :

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

An analytical solution to this integral exists when �i is assumed to follow a gamma distribution. This solution
is the negative binomial distribution. If the model contains a constant term, then in order to identify the mean
of the distribution, it is necessary to assume that E.e�i / D E.�i / D 1. Thus, it is assumed that �i follows a
gamma(�; �) distribution with E.�i / D 1 and V.�i / D 1=� ,

g.�i / D
��

�.�/
���1i exp.���i /

where �.x/ D
R1
0 zx�1 exp.�z/dz is the gamma function and � is a positive parameter. Then, the density

of yi given xi is derived as

f .yi jxi / D
Z 1
0

f .yi jxi ; �i /g.�i /d�i

D
���

yi
i

yi Š�.�/

Z 1
0

e�.�iC�/�i �
�Cyi�1
i d�i

D
���

yi
i �.yi C �/

yi Š�.�/.� C �i /�Cyi

D
�.yi C �/

yi Š�.�/

�
�

� C �i

�� � �i

� C �i

�yi
If you make the substitution ˛ D 1

�
(˛ > 0), the negative binomial distribution can then be rewritten as

f .yi jxi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
; yi D 0; 1; 2; : : :

Thus, the negative binomial distribution is derived as a gamma mixture of Poisson random variables. It has
the conditional mean

E.yi jxi / D �i D ex
0
i
ˇ
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and the conditional variance

V.yi jxi / D �i Œ1C
1

�
�i � D �i Œ1C ˛�i � > E.yi jxi /

The conditional variance of the negative binomial distribution exceeds the conditional mean. Overdispersion
results from neglected unobserved heterogeneity. The negative binomial model with variance function
V.yi jxi / D �i C ˛�

2
i , which is quadratic in the mean, is referred to as the NEGBIN2 model (Cameron

and Trivedi 1986). To estimate this model, specify DIST=NEGBIN(P=2) in the MODEL statement. The
Poisson distribution is a special case of the negative binomial distribution where ˛ D 0. A test of the Poisson
distribution can be carried out by testing the hypothesis that ˛ D 1

�i
D 0. A Wald test of this hypothesis is

provided (it is the reported t statistic for the estimated ˛ in the negative binomial model).

The log-likelihood function of the negative binomial regression model (NEGBIN2) is given by

L D

NX
iD1

(
yi�1X
jD0

ln.j C ˛�1/ � ln.yi Š/

�.yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ

)

where use of the following fact is made if y is an integer:

�.y C a/=�.a/ D

y�1Y
jD0

.j C a/

Cameron and Trivedi (1986) consider a general class of negative binomial models that have mean �i and
variance function �i C ˛�

p
i . The NEGBIN2 model, with p D 2, is the standard formulation of the negative

binomial model. Models that have other values of p, �1 < p <1, have the same density f .yi jxi /, except
that ˛�1 is replaced everywhere by ˛�1�2�p. The negative binomial model NEGBIN1, which sets p D 1,
has the variance function V.yi jxi / D �i C ˛�i , which is linear in the mean. To estimate this model, specify
DIST=NEGBIN(P=1) in the MODEL statement.

The log-likelihood function of the NEGBIN1 regression model is given by

L D

NX
iD1

(
yi�1X
jD0

ln
�
j C ˛�1 exp.x0iˇ/

�
� ln.yi Š/ �

�
yi C ˛

�1 exp.x0iˇ/
�
ln.1C ˛/C yi ln.˛/

)

For more information about the negative binomial regression model, see the section “Negative Binomial
Regression” (Chapter 11, SAS/ETS User’s Guide).
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Zero-Inflated Count Regression Overview
The main motivation for using zero-inflated count models is that real-life data frequently display overdisper-
sion and excess zeros. Zero-inflated count models provide a way to both model the excess zeros and allow
for overdispersion. In particular, there are two possible data generation processes for each observation. The
result of a Bernoulli trial is used to determine which of the two processes to use. For observation i, Process 1
is chosen with probability 'i and Process 2 with probability 1 � 'i . Process 1 generates only zero counts.
Process 2 generates counts from either a Poisson or a negative binomial model. In general,

yi �

�
0 with probability 'i
g.yi / with probability 1 � 'i

Therefore, the probability of fYi D yig can be described as

P.yi D 0jxi / D 'i C .1 � 'i /g.0/

P.yi jxi / D .1 � 'i /g.yi /; yi > 0

where g.yi / follows either the Poisson or the negative binomial distribution.

If the probability 'i depends on the characteristics of observation i, then 'i is written as a function of
z0i , where z0i is the 1 � .q C 1/ vector of zero-inflated covariates and  is the .q C 1/ � 1 vector of zero-
inflated coefficients to be estimated. (The zero-inflated intercept is 0; the coefficients for the q zero-inflated
covariates are 1; : : : ; q .) The function F that relates the product z0i (which is a scalar) to the probability
'i is called the zero-inflated link function,

'i D Fi D F.z0i/

In the HPCOUNTREG procedure, the zero-inflated covariates are indicated in the ZEROMODEL statement.
Furthermore, the zero-inflated link function F can be specified as either the logistic function,

F.z0i/ D ƒ.z
0
i/ D

exp.z0i/
1C exp.z0i/

or the standard normal cumulative distribution function (also called the probit function),

F.z0i/ D ˆ.z
0
i/ D

Z z0
i


0

1
p
2�

exp.�u2=2/du

The zero-inflated link function is indicated by using the LINK= option in the ZEROMODEL statement. The
default ZI link function is the logistic function.

Zero-Inflated Poisson Regression
In the zero-inflated Poisson (ZIP) regression model, the data generation process that is referred to earlier as
Process 2 is

g.yi / D
exp.��i /�

yi
i

yi Š
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where �i D ex
0
i
ˇ. Thus the ZIP model is defined as

P.yi D 0jxi ; zi / D Fi C .1 � Fi / exp.��i /

P.yi jxi ; zi / D .1 � Fi /
exp.��i /�

yi
i

yi Š
; yi > 0

The conditional expectation and conditional variance of yi are given by

E.yi jxi ; zi / D �i .1 � Fi /

V .yi jxi ; zi / D E.yi jxi ; zi /.1C �iFi /

Note that the ZIP model (in addition to the ZINB model) exhibits overdispersion because V.yi jxi ; zi / >
E.yi jxi ; zi /.

In general, the log-likelihood function of the ZIP model is

L D
NX
iD1

ln ŒP.yi jxi ; zi /�

After a specific link function (either logistic or standard normal) for the probability 'i is chosen, it is possible
to write the exact expressions for the log-likelihood function and the gradient.

ZIP Model with Logistic Link Function

First, consider the ZIP model in which the probability 'i is expressed by a logistic link function, namely

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

ln
�
exp.z0i/C exp.� exp.x0iˇ//

�
C

X
fi Wyi>0g

"
yix0iˇ � exp.x0iˇ/ �

yiX
kD2

ln.k/

#

�

NX
iD1

ln
�
1C exp.z0i/

�
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ZIP Model with Standard Normal Link Function

Next, consider the ZIP model in which the probability 'i is expressed by a standard normal link function:
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

ln
˚
ˆ.z0i/C

�
1 �ˆ.z0i/

�
exp.� exp.x0iˇ//

	
C

X
fi Wyi>0g

(
ln
��
1 �ˆ.z0i/

��
� exp.x0iˇ/C yix

0
iˇ �

yiX
kD2

ln.k/

)

For more information about the zero-inflated Poisson regression model, see the section “Zero-Inflated Poisson
Regression” (Chapter 11, SAS/ETS User’s Guide).

Zero-Inflated Negative Binomial Regression
The zero-inflated negative binomial (ZINB) model in PROC HPCOUNTREG is based on the negative
binomial model that has a quadratic variance function (when DIST=NEGBIN in the MODEL or PROC
HPCOUNTREG statement). The ZINB model is obtained by specifying a negative binomial distribution for
the data generation process referred to earlier as Process 2:

g.yi / D
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1 �
�i

˛�1 C �i

�yi
Thus the ZINB model is defined to be

P.yi D 0jxi ; zi / D Fi C .1 � Fi / .1C ˛�i /
�˛�1

P.yi jxi ; zi / D .1 � Fi /
�.yi C ˛

�1/

yi Š�.˛�1/

�
˛�1

˛�1 C �i

�˛�1
�

�
�i

˛�1 C �i

�yi
; yi > 0

In this case, the conditional expectation (E) and conditional variance (V) of yi are

E.yi jxi ; zi / D �i .1 � Fi /

V .yi jxi ; zi / D E.yi jxi ; zi / Œ1C �i .Fi C ˛/�

Like the ZIP model, the ZINB model exhibits overdispersion because the conditional variance exceeds the
conditional mean.
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ZINB Model with Logistic Link Function

In this model, the probability 'i is given by the logistic function, namely

'i D
exp.z0i/

1C exp.z0i/

The log-likelihood function is

L D

X
fi WyiD0g

ln
h
exp.z0i/C .1C ˛ exp.x0iˇ//

�˛�1
i

C

X
fi Wyi>0g

yi�1X
jD0

ln.j C ˛�1/

C

X
fi Wyi>0g

˚
� ln.yi Š/ � .yi C ˛�1/ ln.1C ˛ exp.x0iˇ//C yi ln.˛/C yix

0
iˇ
	

�

NX
iD1

ln
�
1C exp.z0i/

�

ZINB Model with Standard Normal Link Function

For this model, the probability 'i is expressed by the standard normal distribution function (probit function):
'i D ˆ.z0i/. The log-likelihood function is

L D

X
fi WyiD0g

ln
n
ˆ.z0i/C

�
1 �ˆ.z0i/

�
.1C ˛ exp.x0iˇ//

�˛�1
o

C

X
fi Wyi>0g

ln
�
1 �ˆ.z0i/

�
C

X
fi Wyi>0g

yi�1X
jD0

˚
ln.j C ˛�1/

	
�

X
fi Wyi>0g

ln.yi Š/

�

X
fi Wyi>0g

.yi C ˛
�1/ ln.1C ˛ exp.x0iˇ//

C

X
fi Wyi>0g

yi ln.˛/

C

X
fi Wyi>0g

yix0iˇ

For more information about the zero-inflated negative binomial regression model, see the section “Zero-
Inflated Negative Binomial Regression” (Chapter 11, SAS/ETS User’s Guide).
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Computational Resources
The time and memory that PROC HPCOUNTREG requires are proportional to the number of parameters in
the model and the number of observations in the data set being analyzed. Less time and memory are required
for smaller models and fewer observations. When PROC HPCOUNTREG is run in the high-performance
distributed environment, the amount of time required is also affected by the number of nodes and the number
of threads per node as specified in the PERFORMANCE statement.

The method that is chosen to calculate the variance-covariance matrix and the optimization method also
affect the time and memory resources. All optimization methods available through the METHOD= option
have similar memory use requirements. The processing time might differ for each method, depending on
the number of iterations and functional calls needed. The data set is read into memory to save processing
time. If not enough memory is available to hold the data, the HPCOUNTREG procedure stores the data
in a utility file on disk and rereads the data as needed from this file, substantially increasing the execution
time of the procedure. The gradient and the variance-covariance matrix must be held in memory. If the
model has p parameters including the intercept, then at least 8 � .p C p � .p C 1/=2/ bytes of memory
are needed. The processing time is also a function of the number of iterations needed to converge to a
solution for the model parameters. The number of iterations that are needed cannot be known in advance.
You can use the MAXITER= option to limit the number of iterations that PROC HPCOUNTREG executes.
You can alter the convergence criteria by using the nonlinear optimization options available in the PROC
HPCOUNTREG statement. For a list of all the nonlinear optimization options, see “Optimization Control
Options” on page 131.

Covariance Matrix Types
The COVEST= option in the PROC HPCOUNTREG statement enables you to specify the estimation method
for the covariance matrix. COVEST=HESSIAN estimates the covariance matrix that is based on the inverse
of the Hessian matrix; COVEST=OP uses the outer product of gradients; and COVEST=QML produces the
covariance matrix that is based on both the Hessian and outer product matrices. Although all three methods
produce asymptotically equivalent results, they differ in computational intensity and produce results that
might differ in finite samples. The COVEST=OP option provides the covariance matrix that is typically the
easiest to compute. In some cases, the OP approximation is considered more efficient than the Hessian or
QML approximation because it contains fewer random elements. The QML approximation is computationally
the most complex because it requires both the outer product of gradients and the Hessian matrix. In most
cases, the OP or Hessian approximation is preferred to QML. The need for QML approximation arises in
cases where the model is misspecified and the information matrix equality does not hold. The default is
COVEST=HESSIAN.

Displayed Output
PROC HPCOUNTREG produces the following displayed output.
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Model Fit Summary

The “Model Fit Summary” table contains the following information:

• dependent (count) variable name

• number of observations used

• number of missing values in data set, if any

• data set name

• type of model that was fit

• offset variable name, if any

• zero-inflated link function, if any

• zero-inflated offset variable name, if any

• log-likelihood value at solution

• maximum absolute gradient at solution

• number of iterations

• AIC value at solution (smaller value indicates better fit)

• SBC value at solution (smaller value indicates better fit)

A line in the “Model Fit Summary” table indicates whether the algorithm successfully converged.

Parameter Estimates

The “Parameter Estimates” table in the displayed output gives the estimates for the ZI intercept and ZI
explanatory variables; they are labeled with the prefix “Inf_”. For example, the ZI intercept is labeled
“Inf_intercept”. If you specify “Age” (a variable in your data set) as a ZI explanatory variable, then the
“Parameter Estimates” table labels the corresponding parameter estimate “Inf_Age”. If you do not list any ZI
explanatory variables (for the ZI option VAR=), then only the intercept term is estimated.

“_Alpha” is the negative binomial dispersion parameter. The t statistic that is given for “_Alpha” is a test of
overdispersion.

Covariance of Parameter Estimates

If you specify the COVB option in the PROC HPCOUNTREG or MODEL statement, the HPCOUNTREG
procedure displays the estimated covariance matrix, which is defined as the inverse of the information matrix
at the final iteration.
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Correlation of Parameter Estimates

If you specify the CORRB option in the PROC HPCOUNTREG or MODEL statement, the HPCOUNTREG
procedure displays the estimated correlation matrix, which is based on the Hessian matrix used at the final
iteration.

OUTPUT OUT= Data Set
The OUTPUT statement creates a new SAS data set that contains various estimates that you specify. You
can request that the output data set contain the estimates of x0iˇ, the expected value of the response variable,
and the probability that the response variable will take the current value. Furthermore, if a zero-inflated
model is fit, you can request that the output data set contain the estimates of z0i and the probability that the
response is 0 as a result of the zero-generating process. These statistics can be computed for all observations
in which the regressors are not missing, even if the response is missing. By adding observations with missing
response values to the input data set, you can compute these statistics for new observations or for settings
of the regressors that are not present in the data without affecting the model fit. Because of potential space
limitations on the client workstation, the data set that is created by the OUTPUT statement does not contain
the variables in the input data set.

OUTEST= Data Set
The OUTEST= data set is made up of at least two rows: the first row (with _TYPE_=‘PARM’) contains each
of the parameter estimates in the model, and the second row (with _TYPE_=‘STD’) contains the standard
errors for the parameter estimates in the model.

If you use the COVOUT option in the PROC HPCOUNTREG statement, the OUTEST= data set also contains
the covariance matrix for the parameter estimates. The covariance matrix appears in the observations with
_TYPE_=‘COV’, and the _NAME_ variable labels the rows with the parameter names.

ODS Table Names
PROC HPCOUNTREG assigns a name to each table that it creates. You can use these names to denote the
table when you use the Output Delivery System (ODS) to select tables and create output data sets. These
table names are listed in Table 6.2.

Table 6.2 ODS Tables Produced in PROC HPCOUNTREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
FitSummary Summary of nonlinear estimation Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
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Examples: The HPCOUNTREG Procedure

Example 6.1: High-Performance Zero-Inflated Poisson Model
This example shows the use of the HPCOUNTREG procedure with an emphasis on large data set processing
and the performance improvements that are achieved by executing in the high-performance distributed
environment.

The following DATA step generates one million replicates from the zero-inflated Poisson (ZIP) model. The
model contains seven variables and three variables that correspond to the zero-inflated process.

data simulate;
call streaminit(12345);
array vars x1-x7;
array zero_vars z1-z3;

array parms{7} (.3 .4 .2 .4 -.3 -.5 -.3);
array zero_parms{3} (-.6 .3 .2);

intercept=2;
z_intercept=-1;
theta=0.5;

do i=1 to 1000000;
sum_xb=0;
sum_gz=0;
do j=1 to 7;

vars[j]=rand('NORMAL',0,1);
sum_xb=sum_xb+parms[j]*vars[j];

end;
mu=exp(intercept+sum_xb);
y_p=rand('POISSON', mu);

do j=1 to 3;
zero_vars[j]=rand('NORMAL',0,1);
sum_gz = sum_gz+zero_parms[j]*zero_vars[j];

end;
z_gamma = z_intercept+sum_gz;
pzero = cdf('LOGISTIC',z_gamma);
cut=rand('UNIFORM');
if cut<pzero then y_p=0;
output;

end;
keep y_p x1-x7 z1-z3;
run;

The following statements estimate a zero-inflated Poisson model.
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option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

proc hpcountreg data=simulate dist=zip;
performance nthreads=2 nodes=1 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
model y_p=x1-x7;
zeromodel y_p ~ z1-z3;

run;

The model is executed in the distributed computing environment on two threads and only one node. These
settings are used to obtain a hypothetical environment that might resemble running the HPCOUNTREG
procedure on a desktop workstation with a dual-core CPU. To run these statements successfully, you need to
set the macro variables GRIDHOST and GRIDINSTALLLOC to resolve to appropriate values, or you can
replace the references to the macro variables in the example with the appropriate values. Output 6.1.1 shows
the “Performance Information” table for this hypothetical scenario.

Output 6.1.1 Performance Information with One Node and One Thread

Performance Information

Host Node << your grid host >>

Install Location /opt/v940m2/laxno/TKGrid

Execution Mode Distributed

Number of Compute Nodes 1

Number of Threads per Node 2

Output 6.1.2 shows the results for the zero-inflated Poisson model. The “Model Fit Summary” table shows
detailed information about the model and indicates that all one million observations were used to fit the
model. All parameter estimates in the “Parameter Estimates” table are highly significant and correspond to
their theoretical values set during the data generating process. The optimization of the model that contains
one million observations took 42.57 seconds.

Output 6.1.2 Zero-Inflated Poisson Model Execution on One Node and Two Threads

Model Fit Summary

Dependent Variable y_p

Number of Observations 1000000

Data Set WORK.SIMULATE

Model ZIP

ZI Link Function Logistic

Log Likelihood -2215238

Maximum Absolute Gradient 2.0586E-8

Number of Iterations 7

Optimization Method Newton-Raphson

AIC 4430500

SBC 4430642

Convergence criterion (FCONV=2.220446E-16) satisfied.
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Output 6.1.2 continued

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 2.0005 0.000492 4069.80 <.0001

x1 1 0.2995 0.000352 850.17 <.0001

x2 1 0.3998 0.000353 1132.23 <.0001

x3 1 0.2008 0.000352 570.27 <.0001

x4 1 0.3994 0.000353 1132.85 <.0001

x5 1 -0.2995 0.000353 -848.95 <.0001

x6 1 -0.5000 0.000353 -1414.9 <.0001

x7 1 -0.3002 0.000352 -852.14 <.0001

Inf_Intercept 1 -0.9993 0.002521 -396.45 <.0001

Inf_z1 1 -0.6024 0.002585 -233.02 <.0001

Inf_z2 1 0.2976 0.002454 121.25 <.0001

Inf_z3 1 0.1974 0.002430 81.20 <.0001

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 0.70 1.60%

Communication to Client 0.08 0.19%

Optimization 42.57 97.90%

Post-Optimization 0.14 0.31%

In the following statements, the PERFORMANCE statement is modified to use a grid with 10 nodes, with
each node capable of spawning eight threads:

proc hpcountreg data=simulate dist=zip;
performance nthreads=8 nodes=10 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
model y_p=x1-x7;
zeromodel y_p ~ z1-z3;

run;

Because the two models being estimated are identical, it is reasonable to expect that Output 6.1.2 and
Output 6.1.3 would show the same results. However, you can see a significant difference in performance
between the two models. The second model, which was run on a grid that used 10 nodes with eight threads
each, took only 1.69 seconds instead of 42.57 seconds to optimize.

In certain circumstances, you might observe slight numerical differences in the results, depending on
the number of nodes and threads involved. This happens because the order in which partial results are
accumulated can make a difference in the final result, owing to the limits of numerical precision and the
propagation of error in numerical computations.
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Output 6.1.3 Zero-Inflated Poisson Model Execution on 10 Nodes with Eight Threads Each

The HPCOUNTREG ProcedureThe HPCOUNTREG Procedure

Model Fit Summary

Dependent Variable y_p

Number of Observations 1000000

Data Set WORK.SIMULATE

Model ZIP

ZI Link Function Logistic

Log Likelihood -2215238

Maximum Absolute Gradient 2.0608E-8

Number of Iterations 7

Optimization Method Newton-Raphson

AIC 4430500

SBC 4430642

Convergence criterion (FCONV=2.220446E-16) satisfied.

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 2.0005 0.000492 4069.80 <.0001

x1 1 0.2995 0.000352 850.17 <.0001

x2 1 0.3998 0.000353 1132.23 <.0001

x3 1 0.2008 0.000352 570.27 <.0001

x4 1 0.3994 0.000353 1132.85 <.0001

x5 1 -0.2995 0.000353 -848.95 <.0001

x6 1 -0.5000 0.000353 -1414.9 <.0001

x7 1 -0.3002 0.000352 -852.14 <.0001

Inf_Intercept 1 -0.9993 0.002521 -396.45 <.0001

Inf_z1 1 -0.6024 0.002585 -233.02 <.0001

Inf_z2 1 0.2976 0.002454 121.25 <.0001

Inf_z3 1 0.1974 0.002430 81.20 <.0001

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 0.02 1.18%

Communication to Client 0.06 2.95%

Optimization 1.69 86.82%

Post-Optimization 0.18 9.05%
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As this example suggests, increasing the number of nodes and the number of threads per node improves
performance significantly. When you use the parallelism afforded by a high-performance distributed environ-
ment, you can see an even more dramatic reduction in the time required for the optimization as the number of
observations in the data set increases. When the data set is extremely large, the computations might not even
be possible in some cases, given the typical memory resources and computational constraints of a desktop
computer. Under such circumstances the high-performance distributed environment becomes a necessity.
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Overview: HPPANEL Procedure
The HPPANEL procedure is a high-performance version of the PANEL procedure in SAS/ETS software.
Both procedures analyze a class of linear econometric models that commonly arise when time series and
cross-sectional data are combined (pooled). This type of data on time series cross-sectional bases is often
referred to as panel data. Typical examples of panel data include observations over time about households,
countries, firms, trade, and so on. For example, in the case of survey data about household income, the panel
is created by repeatedly surveying the same households in different time periods (years).

Unlike the PANEL procedure (which can be run only on an individual workstation), the HPPANEL procedure
takes advantage of a computing environment that enables it to distribute the optimization task among one or
more nodes. Running on one node is called single-machine, and running on more than one node is called
distributed mode. In addition, each node (whether in single-machine mode or in distributed mode) can use
one or more threads to carry out the optimization on its subset of the data. When several nodes are used and
each node uses several threads to carry out its part of the work, the result is a highly parallel computation that
provides a dramatic gain in performance.

NOTE: Disbributed mode requires SAS High-Performance Econometrics.

You can use the HPPANEL procedure to read and write data in distributed form and perform analyses in
distributed mode or in single-machine mode. For more information about how to affect the execution mode
of SAS high-performance analytical procedures, see the section “Processing Modes” on page 10 in Chapter 3,
“Shared Concepts and Topics.”

The HPPANEL procedure is specifically designed to operate in the high-performance distributed mode. By
default, PROC HPPANEL performs computations in multiple threads.

The panel data models can be grouped into several categories that depend on the structure of the error term.
The HPPANEL procedure uses the following error structures and the corresponding methods to analyze data:

• one-way and two-way models

• fixed-effects and random-effects models

A one-way model depends only on the cross section to which the observation belongs. A two-way model
depends on both the cross section and the time period to which the observation belongs.

Apart from the possible one-way or two-way nature of the effect, the other dimension of difference between
the possible specifications is the nature of the cross-sectional or time-series effect. The models are referred to
as fixed-effects models if the effects are nonrandom and as random-effects models otherwise.
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If the effects are fixed, the models are essentially regression models that have dummy variables that correspond
to the specified effects. For fixed-effects models, ordinary least squares (OLS) estimation is the best linear
unbiased estimator. Random-effects models use a two-stage approach: In the first stage, variance components
are calculated by using methods described by Fuller and Battese (1974); Wansbeek and Kapteyn (1989);
Wallace and Hussain (1969); Nerlove (1971). In the second stage, variance components are used to standardize
the data, and ordinary least squares (OLS) regression is performed.

Getting Started: HPPANEL Procedure
The following statements use the cost function data from Greene (1990) to estimate the variance components
model. The variable Production is the log of output in millions of kilowatt-hours, and the variable Cost is the
log of cost in millions of dollars. See Greene (1990) for details.

data greene;
input firm year production cost @@;

datalines;
1 1955 5.36598 1.14867 1 1960 6.03787 1.45185
1 1965 6.37673 1.52257 1 1970 6.93245 1.76627
2 1955 6.54535 1.35041 2 1960 6.69827 1.71109
2 1965 7.40245 2.09519 2 1970 7.82644 2.39480
3 1955 8.07153 2.94628 3 1960 8.47679 3.25967

... more lines ...

You decide to fit the following model to the data,

Cit D InterceptC ˇPit C vi C et C �it for i D 1; : : :;N and t D 1; : : :;T

where Cit and Pit represent the cost and production; and vi , et , and �it are the cross-sectional, time series,
and error variance components, respectively.

If you assume that the time and cross-sectional effects are random, four possible estimators are left for the
variance components. The following statements choose the Fuller-Battese method to fit this model:

proc hppanel data=greene;
model cost = production / rantwo vcomp = fb;
id firm year;
performance nodes=0 nthreads=2;

run;
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The output of the HPPANEL procedure is shown in Output 7.1.

Figure 7.1 Two-Way Random Effects Results

The HPPANEL ProcedureThe HPPANEL Procedure

Model Information

Data Source GREENE

Response Variable cost

Model RANTWO

Variance Component FULLER

Execution Mode Single-Machine

Fit Statistics

Sum of Squared Error 0.34808

Degree of Freedom 22.00000

Mean Squared Error 0.01582

Root Mean Squared Error 0.12579

R-Square 0.81362

Variance Component Estimates

Variance Component for Cross Sections 0.0469

Variance Component for Time Series 0.00906

Variance Component for Error 0.00875

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 -2.99992 0.64778 -4.63 <.0001

production 1 0.74660 0.07618 9.80 <.0001

Printed first is the model description, which reports the method used for estimation and the method used
for estimating error components. Printed next is the fit statistics table, and then the variance components
estimates. Finally, the table of regression parameter estimates shows the estimates, standard errors, and t
tests.

Syntax: HPPANEL Procedure
The following statements are available in the HPPANEL procedure:

PROC HPPANEL options ;
ID cross-section-id time-series-id ;
MODEL response = regressors < /options > ;
RESTRICT equation1< ,equation2. . . > ;
TEST equation < ,equation2. . . >< / options > ;
OUTPUT OUT=SAS-data-set < output-options > ;
PERFORMANCE < performance-options > ;

The ID and MODEL statements are required.
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The following sections provide a functional summary of statements and options, then describe the PROC
HPPANEL statement, and then describe the other statements in alphabetical order.

Functional Summary
Table 7.1 summarizes the statements and options that you can use in the HPPANEL procedure.

Table 7.1 Functional Summary

Description Statement Option

Data Set Options
Includes correlations in the OUTEST= data set HPPANEL CORROUT
Includes covariances in the OUTEST= data set HPPANEL COVOUT
Specifies the input data set HPPANEL DATA=
Specifies the name of an output SAS data set OUTPUT OUT=
Writes parameter estimates to an output data
set

HPPANEL OUTEST=

Variable Role Options
Specifies the cross-sectional and time ID vari-
ables

ID

Printing Control Options
Prints correlations of the estimates HPPANEL CORRB
Prints covariances of the estimates HPPANEL COVB
Suppresses printed output HPPANEL NOPRINT
Prints fixed effects MODEL PRINTFIXED
Performs tests of linear hypotheses TEST
Model Estimation Options
Requests the one-way fixed-effects model MODEL FIXONE
Requests the one-way fixed-effects model with
respect to time

MODEL FIXONETIME

Requests the two-way fixed-effects model MODEL FIXTWO
Suppresses the intercept term MODEL NOINT
Requests the one-way random-effects model MODEL RANONE
Requests the two-way random-effects model MODEL RANTWO
Specifies the method for the variance compo-
nents estimator

MODEL VCOMP=

Specifies linear equality restrictions on the pa-
rameters

RESTRICT

Specifies which tests to perform TEST WALD, LM, LR
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PROC HPPANEL Statement
PROC HPPANEL options ;

The HPPANEL statement invokes the HPPANEL procedure.

You can specify the following options:

DATA=SAS-data-set
names the input data set. Only one observation is allowed for each cross section and time period. If
you omit the DATA= option, PROC HPPANEL uses the most recently created SAS data set.

CORRB
prints the matrix of estimated correlations between the parameter estimates.

COVB
prints the matrix of estimated covariances between the parameter estimates.

NOPRINT
suppresses the normal printed output.

OUTEST=SAS-data-set
names an output data set to contain the parameter estimates. When the OUTEST= option is not
specified, the OUTEST= data set is not created. For more information about the structure of the
OUTEST= data set, see the section “OUTEST= Data Set” on page 173.

OUTCOV

COVOUT
writes the standard errors and covariance matrix of the parameter estimates to the OUTEST= data set.
For more information, see the section “OUTEST= Data Set” on page 173.

OUTCORR

CORROUT
writes the correlation matrix of the parameter estimates to the OUTEST= data set. For more information,
see the section “OUTEST= Data Set” on page 173.

In addition, you can specify any of the following MODEL statement options in the PROC HPPANEL state-
ment: FIXONE, FIXONETIME, FIXTWO, RANONE, RANTWO, NOINT, PRINTFIXED, and VCOMP=.
Specifying these options in the PROC HPPANEL statement is equivalent to specifying them in the MODEL
statement. For a complete description of each of these options, see the section “MODEL Statement” on
page 161.

ID Statement
ID cross-section-id time-series-id ;

The ID statement specifies variables in the input data set that identify the cross section and the time period
for each observation. The ID statement is required. Unlike the PANEL procedure, the HPPANEL procedure
does not require the data set to be sorted.
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MODEL Statement
MODEL response = regressors < / options > ;

The MODEL statement specifies the regression model and the error structure that are assumed for the
regression residuals. The response variable is regressed on the independent variables (regressors). You can
specify only one MODEL statement and only one response.

The error structure is specified by the FIXONE, FIXONETIME, FIXTWO, RANONE, and RANTWO
options.

You can specify the following options after a slash (/).

FIXONE
requests that a one-way fixed-effects model be estimated, where the one-way model corresponding to
cross-sectional effects only.

FIXONETIME
requests that a one-way fixed-effects model be estimated, where the one-way model corresponding to
time effects only.

FIXTWO
requests that a two-way fixed-effects model be estimated.

NOINT
suppresses the intercept parameter from the model.

PRINTFIXED
prints the fixed effects.

RANONE
requests that a one-way random-effects model be estimated.

RANTWO
requests that a two-way random-effects model be estimated.

VCOMP=FB | NL | WH | WK
specifies the type of variance component estimator to use.

For more information about these estimators, see the sections “One-Way Random-Effects Model” on
page 169 and “Two-Way Random-Effects Model” on page 170.

You can specify the following values:

FB requests the Fuller-Battese estimator.

WK requests the Wansbeek-Kapteyn estimator.

WH requests the Wallace-Hussain estimator.

NERLOVE requests the Nerlove estimator.

By default, VCOMP=WK for both balanced and unbalanced data.
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OUTPUT Statement
OUTPUT OUT=SAS-data-set < output-options > ;

The OUTPUT statement creates a new SAS data set to contain variables that are specified by the COPYVAR
option, the cross-sectional ID (_CSID_), and the time period (_TSID_). This data set also contains the
predicted value and the residual if they are specified by output-options. When the response values are
missing for the observation, all output estimates except the residual are still computed as long as none of the
explanatory variables are missing. You can specify only one OUTPUT statement.

You must specify the OUT= option:

OUT=SAS-data-set
names the output data set.

You can specify one or more of the following output-options:

COPYVAR=(SAS-variable-names)

COPYVARS=(SAS-variable-names)
adds SAS variables to the output data set.

PREDICTED
outputs estimates of predicted dependent variables.

RESIDUAL
outputs estimates of residuals.

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options to control the multithreaded and distributed
computing environment and requests detailed performance results of the HPPANEL procedure. You can also
use the PERFORMANCE statement to control whether the HPPANEL procedure executes in single-machine
or distributed mode. You can specify the following performance-options:

DETAILS
requests a table that shows a timing breakdown of the procedure steps.

NODES=n
specifies the number of nodes in the distributed computing environment, provided that the data are not
processed alongside the database.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPPANEL creates
one thread per CPU for the analytic computations.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 36 in Chapter 3, “Shared Concepts and Topics.”
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RESTRICT Statement
RESTRICT equation1 < ,equation2. . . > ;

The RESTRICT statement specifies linear equality restrictions on the parameters in the MODEL statement.
There can be as many unique restrictions as the number of parameters in the MODEL statement. Multiple
RESTRICT statements are understood as joint restrictions on the model’s parameters.

Currently, PROC HPPANEL only supports linear equality restrictions. Restriction expressions can be
composed only of algebraic operations that involve the addition symbol (+), subtraction symbol (–), and
multiplication symbol (*).

The following statements illustrate the use of the RESTRICT statement:

proc hppanel;
id csid tsid;
model y = x1 x2 x3;
restrict x1 = 0, x2 * .5 + 2 * x3= 0;
restrict x2 = 0, intercept = 0;

run;

A RESTRICT statement cannot include a division sign in its formulation. As in the preceding example, you
can obtain restrictions on the intercept by using the keyword INTERCEPT.

TEST Statement
TEST equation1 < ,equation2. . . >< / options > ;

The TEST statement performs Wald, LaGrange multiplier, and likelihood ratio tests of linear hypotheses
about the regression parameters in the MODEL statement. Each equation specifies a linear hypothesis
to be tested. Currently, only linear equality restrictions and tests are permitted in PROC HPPANEL. Test
expressions can be composed only of algebraic operations that involve the addition symbol (+), subtraction
symbol (–), and multiplication symbol (*). All hypotheses in one TEST statement are tested jointly. Variable
names in the equations must correspond to regressors in the preceding MODEL statement, and each name
represents the coefficient of the corresponding regressor. In the equality restrictions, you can use the keyword
INTERCEPT to refer to the coefficient of the intercept.

You can specify the following options after the slash (/):

ALL
specifies Wald, LaGrange multiplier, and likelihood ratio tests.

WALD
specifies the Wald test.

LM
specifies the LaGrange multiplier test.
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LR
specifies the likelihood ratio test.

By default, the Wald test is performed.

The following statements illustrate the use of the TEST statement:

proc hppanel;
id csid tsid;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test intercept = 0, x3 = 0;

run;

The first test investigates the joint hypothesis that

ˇ1 D 0

and

0:5ˇ2 C 2ˇ3 D 0

Details: HPPANEL Procedure

Specifying the Input Data
The HPPANEL procedure is similar to other regression procedures in SAS. Suppose you want to regress the
variable Y on regressors X1 and X2. Cross sections are identified by the variable State, and time periods are
identified by the variable Date. Unlike the PANEL procedure, the HPPANEL procedure does not require the
data set to be sorted. To invoke the HPPANEL procedure, you must specify the cross section and time series
variables in an ID statement. The following statements shows the correct syntax:

proc hppanel data=a;
id state date;
model y = x1 x2;
performance nodes=2 nthreads=4;

run;

Specifying the Regression Model
The MODEL statement in PROC HPPANEL is specified like the MODEL statement in other SAS regression
procedures: the dependent variable is listed first, followed by an equal sign, followed by the list of regressor
variables, as shown in the following statements:
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proc hppanel data=a;
id state date;
model y = x1 x2;
performance nodes=2 nthreads=4;

run;

Specifying the Number of Nodes and Number of Threads
The PERFORMANCE statement in PROC HPPANEL is specified like the PERFORMANCE statement in
other SAS high-performance procedures. The following statements execute the model in the distributed
computing environment with two threads and four nodes:

proc hppanel data=a;
id state date;
model y = x1 x2;
performance nodes=2 nthreads=4;

run;

The major advantage of using PROC HPPANEL is that you can incorporate a model for the structure of the
random errors. It is important to consider what type of error structure model is appropriate for your data and
to specify the corresponding option in the MODEL statement.

The error structure options supported by the HPPANEL procedure are FIXONE, FIXONETIME, FIXTWO,
RANONE, and RANTWO. For more information about these methods and the error structures they assume,
see the following sections. The following statements fit a Fuller-Battese one-way random-effects model:

proc hppanel data=a;
id state date;
model y = x1 x2 / ranone vcomp=fb;
performance nodes=0 nthreads=1;

run;

To aid in model specification within this class of models, PROC HPPANEL provides one specification test
statistic, the Hausman m statistic, which provides information about the appropriateness of the random-effects
specification. The m statistic is based on the idea that, under the null hypothesis of no correlation between
the effects variables and the regressors, ordinary least squares (OLS) and generalized least squares (GLS) are
consistent. However, OLS is inefficient. Hence, a test can be based on the result that the covariance between
an efficient estimator and its difference from an inefficient estimator is 0. Rejection of the null hypothesis
might suggest that the fixed-effects model is more appropriate.

The HPPANEL procedure also provides the Buse R-square measure. This number is interpreted as a measure
of the proportion of the transformed sum of squares of the dependent variable that is attributable to the
influence of the independent variables. For OLS estimation, the Buse R-square measure is equivalent to the
usual R-square measure.
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Unbalanced Data
The HPPANEL procedure can process data that have different numbers of time series observations across
different cross sections. The missing time series observations are recognized by the absence of time series
ID variable values in some of the cross sections in the input data set. Moreover, if an observation that has a
particular time series ID value and cross-sectional ID value is present in the input data set but one or more of
the model variables are missing, that time series point is treated as missing for that cross section.

One-Way Fixed-Effects Model
The specification for the one-way fixed-effects model is

uit D i C �it

where the i are nonrandom parameters to be estimated.

Let Q0 D diag.ETi /, with NJTi D JTi=Ti and ETi D ITi � NJTi , where JTi is a matrix of Ti ones.

The matrix Q0 represents the within transformation. In the one-way model, the within transformation is the
conversion of the raw data to deviations from a cross section’s mean. The vector Qxit is a row of the general
matrix Xs , where the subscripted s implies that the constant (column of ones) is missing.

Let QXs D Q0Xs and Qy D Q0y. The estimator of the slope coefficients is given by

Q̌
s D . QX

0

s
QXs/�1 QX

0

s Qy

After the slope estimates have been calculated, the estimation of an intercept or the cross-sectional fixed
effects is handled as follows. First, you obtain the cross-sectional effects:

i D Nyi � � Q̌s Nxi � for i D 1 : : :N

If the NOINT option is specified, then the dummy variables’ coefficients are set equal to the fixed effects. If
you want an intercept, then the ith dummy variable is obtained from the following expression:

Di D i � N for i D 1 : : :N � 1

The intercept is the Nth fixed effect N .

The within-model sum of squared errors is

SSE D
NX

iD1

TiX
tD1

.yit � i �Xs Q̌s/2

The estimated error variance can be written as

O�2� D SSE=.M � N � .K � 1//

Alternatively, an equivalent way to express the error variance is

O�2� D Qu
0

Q0 Qu=.M � N � .K � 1//
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where the residuals Qu are given by Qu D .IM � jM j0M=M /.y � Xs Q̌s/ if there is an intercept and by
Qu D .y �Xs Q̌s/ if there is not. The drawback is that the formula changes (but the results do not) with the
inclusion of a constant.

The variance covariance matrix of Q̌s is given by

Var
h
Q̌
s

i
D O�2� .

QX
0

s
QXs/�1

The covariance of the dummy variables and the dummy variables with the Q̌s depends on whether the
intercept is included in the model. For more information, see the section “One-Way Fixed-Effects Model”
(Chapter 20, SAS/ETS User’s Guide).

Alternatively, the FIXONETIME model option estimates a one-way model in which the heterogeneity comes
from time effects. This option is analogous to re-sorting the data by time and then by cross section, and then
running a FIXONE model. The advantage of using the FIXONETIME option is that sorting is avoided and
the model remains labeled correctly.

Two-Way Fixed-Effects Model
The specification for the two-way fixed-effects model is

uit D i C ˛t C �it

where the i and ˛t are nonrandom parameters to be estimated.

If you do not specify the NOINT option (which suppresses the intercept) in the MODEL statement, the
estimates for the fixed effects are reported under the restriction that N D 0 and ˛T D 0. If you specify the
NOINT option to suppress the intercept, only the restriction ˛T D 0 is imposed.

Balanced Panels
Assume that the data are balanced (for example, all cross sections have T observations). Then you can write

Qyit D yit � Nyi � � Ny�t C NNy

Qxit D xit � Nxi � � Nx�t C NNx

where the symbols are as follows:

• yit and xit are the dependent variable (a scalar) and the explanatory variables (a vector whose columns
are the explanatory variables, not including a constant), respectively

• Nyi � and Nxi � are cross section means

• Ny�t and Nx�t are time means

• NNy and NNx are the overall means
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The two-way fixed-effects model is simply a regression of Qyit on Qxit . Therefore, the two-way ˇ is given by

Q̌
s D

�
QX
0
QX
��1
QX
0

Qy

The following calculations of cross-sectional dummy variables, time dummy variables, and intercepts are
similar to how they are calculated in the one-way model:

First, you obtain the net cross-sectional and time effects. Denote the cross-sectional effects by  and the time
effects by ˛. These effects are calculated from the following relations:

Oi D
�
Nyi � � NNy

�
� Q̌s

�
Nxi � � NNx

�
Ǫ t D

�
Ny�t � NNy

�
� Q̌s

�
Nx�t � NNx

�
Use the superscript C and T to denote the cross-sectional dummy variables and time dummy variables,
respectively. Under the NOINT option, the following equations produce the dummy variables:

DCi D Oi C ǪT

DTt D Ǫ t � ǪT

When an intercept is specified, the equations for dummy variables and intercept are

DCi D Oi � ON

DTt D Ǫ t � ǪT

Intercept D ON C ǪT

The sum of squared errors is

SSE D
NX

iD1

TiX
tD1

.yit � i � ˛t �Xs Q̌s/2

The estimated error variance is

O�2� D SSE=.M � N � T � .K � 1//

With or without a constant, the covariance matrix of Q̌s is given by

Var
h
Q̌
s

i
D O�2� .

QX
0

s
QXs/�1

For information about the covariance matrix that is related to dummy variables, see the section “Two-Way
Fixed-Effects Model” (Chapter 20, SAS/ETS User’s Guide).

Unbalanced Panels
Let X� and y� be the independent and dependent variables, respectively, that are arranged by time and by
cross section within each time period. (Note that the input data set that the PANEL procedure uses must be
sorted by cross section and then by time within each cross section.) Let Mt be the number of cross sections
that are observed in year t , and let

P
t Mt D M . Let Dt be the Mt�N matrix that is obtained from the
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N�N identity matrix from which rows that correspond to cross sections that are not observed at time t have
been omitted. Consider

Z D .Z1;Z2/

where Z1 D .D
0

1;D
0

2; : : : :;D
0

T /
0

and Z2 D diag.D1jN ;D2jN ; : : : ;DT jN /. The matrix Z contains the
dummy variable structure for the two-way model.

Let

�N D Z
0

1Z1

�T D Z
0

2Z2

A D Z
0

2Z1
NZ D Z2 � Z1��1N A

0

Q D �T �A��1N A
0

P D .IM � Z1��1N Z
0

1/ �
NZQ�1 NZ

0

The estimate of the regression slope coefficients is given by

Q̌
s D .X

0

�sPX�s/�1X
0

�sPy�

where X�s is the X� matrix without the vector of 1s.

The estimator of the error variance is

O�2� D Qu
0

P Qu=.M � T � N C 1 � .K � 1//

where the residuals are given by Qu D .IM � jM j
0

M=M /.y� �X�s Q̌s/ if there is an intercept in the model
and by Qu D y� �X�s Q̌s if there is no intercept.

The actual implementation is quite different from the theory. For more information, see the section “Two-Way
Fixed-Effects Model” (Chapter 20, SAS/ETS User’s Guide).

One-Way Random-Effects Model
The specification for the one-way random-effects model is

uit D �i C �it

Let Z0 D diag.JTi ), P0 D diag.NJTi /, and Q0 D diag.ETi /, with NJTi D JTi=Ti and ETi D ITi � NJTi .
Define QXs D Q0Xs . Also define Qy D Q0y and J as a vector of 1s whose length is Ti .

In the one-way model, estimation proceeds in a two-step fashion. First, you obtain estimates of the variance
of the �2� and �2� . There are multiple ways to derive these estimates; PROC HPPANEL provides four options.
For more information, see the section “One-Way Random-Effects Model” (Chapter 20, SAS/ETS User’s
Guide).

After the variance components are calculated from any method, the next task is to estimate the regression
model of interest. For each individual, you form a weight (�i ),

�i D 1 � ��=wi
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w2i D Ti�
2
� C �

2
�

where Ti is the ith cross section’s time observations.

Taking the �i , you form the partial deviations,

Qyit D yit � �i Nyi �

Qxit D xit � �i Nxi �

where Nyi � and Nxi � are cross section means of the dependent variable and independent variables (including the
constant if any), respectively.

The random-effects ˇ is then the result of simple OLS on the transformed data.

Two-Way Random-Effects Model
The specification for the two-way random-effects model is

uit D �i C et C �it

As it does for the one-way random-effects model, the HPPANEL procedure provides four options for variance
component estimators. However, unbalanced panels present some special concerns that do not occur for
one-way random-effects models.

Let X� and y� be the independent and dependent variables that are arranged by time and by cross section
within each time period. (Note that the input data set that the PANEL procedure uses must be sorted by cross
section and then by time within each cross section.) Let Mt be the number of cross sections that are observed
in time t , and let

P
t Mt D M . Let Dt be the Mt�N matrix that is obtained from the N�N identity matrix

from which rows that correspond to cross sections that are not observed at time t have been omitted. Consider

Z D .Z1;Z2/

where Z1 D .D
0

1;D
0

2; : : : ::D
0

T /
0

and Z2 D diag.D1jN ;D2jN ; : : : : : :DT jN /.

The matrix Z contains the dummy variable structure for the two-way model.

For notational ease, let

�N D Z
0

1Z1

�T D Z
0

2Z2

A D Z
0

2Z1

NZ D Z2 � Z1��1N A
0

N�1 D IM � Z1��1N Z
0

1

N�2 D IM � Z2��1T Z
0

2

Q D �T �A��1N A
0

P D .IM � Z1��1N Z
0

1/ �
NZQ�1 NZ

0
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PROC HPPANEL provides four methods to estimate the variance components. For more information, see the
section “Two-Way Random-Effects Model” (Chapter 20, SAS/ETS User’s Guide).

After the estimates of the variance components are calculated, you can proceed to the final estimation. If the
panel is balanced, partial mean deviations are used as follows

Qyit D yit � �1 Nyi � � �2 Ny�t C �3 Ny��

Qxit D xit � �1 Nxi � � �2 Nx�t C �3 Nx��

The � estimates are obtained from

�1 D 1 �
��p

T�2� C �
2
�

�2 D 1 �
��p

N�2e C �
2
�

�3 D �1 C �2 C
��p

T�2� CN�
2
e C �

2
�

� 1

With these partial deviations, PROC HPPANEL uses OLS on the transformed series (including an intercept if
you want).

The case of an unbalanced panel is somewhat more complicated. Wansbeek and Kapteyn show that the
inverse of � can be written as

�2��
�1
D V �VZ2 QP�1Z

0

2V

with the following:

V D IM � Z1 Q��1N Z01
QP D Q�T � A Q��1N A

0

Q�N D �N C

�
�2�
�2�

�
IN

Q�T D �T C

�
�2�
�2e

�
IT

By using the inverse of the covariance matrix of the error, it becomes possible to complete GLS on the
unbalanced panel.

Linear Hypothesis Testing
For a linear hypothesis of the form R ˇ D r, where R is J�K and r is J�1, the F -statistic with J;M �K
degrees of freedom is computed as

.Rˇ � r/
0

ŒR OVR0��1.Rˇ � r/

However, it is also possible to write the F statistic as

F D
. Ou
0

� Ou� � Ou
0

Ou/=J
Ou0 Ou=.M �K/

where
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• Ou�is the residual vector from the restricted regression

• Ou is the residual vector from the unrestricted regression

• J is the number of restrictions

• M�K are the degrees of freedom,M is the number of observations, andK is the number of parameters
in the model

The Wald, likelihood ratio (LR), and LaGrange multiplier (LM) tests are all related to the F test. You use this
relationship of the F test to the likelihood ratio and LaGrange multiplier tests. The Wald test is calculated
from its definition.

The Wald test statistic is

W D .Rˇ � r/
0

ŒR OVR0��1.Rˇ � r/

The likelihood ratio is

LR D M ln
�
1C

1

M �K
JF

�
The LaGrange multiplier test statistic is

LM D M
�

JF
M �K C JF

�
where JF represents the number of restrictions multiplied by the result of the F test.

The distribution of these test statistics is the �2 distribution whose degrees of freedom equal the number
of restrictions imposed (J ). The three tests are asymptotically equivalent, but they have differing small-
sample properties. Greene (2000, p. 392) and Davidson and MacKinnon (1993, pp. 456–458) discuss the
small-sample properties of these statistics.

Specification Tests
The HPPANEL procedure outputs one specification test for random effects: the Hausman (1978) specification
test (m statistic) can be used to test hypotheses in terms of bias or inconsistency of an estimator. This test was
also proposed by Wu (1973) and further extended in Hausman and Taylor (1982). Hausman’s m statistic is as
follows.

Consider two estimators, Ǒa and Ǒb , which under the null hypothesis are both consistent, but only Ǒa is
asymptotically efficient. Under the alternative hypothesis, only Ǒb is consistent. The m statistic is

m D . Ǒb � Ǒa/
0

. OSb � OSa/�1. Ǒb � Ǒa/

where OSb and OSa are consistent estimates of the asymptotic covariance matrices of Ǒb and Ǒa. Then m is
distributed as �2 with k degrees of freedom, where k is the dimension of Ǒa and Ǒb .

In the random-effects specification, the null hypothesis of no correlation between effects and regressors
implies that the OLS estimates of the slope parameters are consistent and inefficient but the GLS estimates of
the slope parameters are consistent and efficient. This facilitates a Hausman specification test. The reported
degrees of freedom for the �2 statistic are equal to the number of slope parameters. If the null hypothesis
holds, the random-effects specification should be used.
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OUTPUT OUT= Data Set
PROC HPPANEL writes the initial data of the estimated model, predicted values, and residuals to an output
data set when the OUT= option is specified in the OUTPUT statement. The OUT= data set contains the
following variables:

_CSID_ is the value of the cross section ID. The variable name is the one specified in the id
statement.

_TSID_ is the value of the time period in the dynamic model. The variable name is the one
specified in the id statement.

Regressors are the values of regressor variables that are specified in the COPYVAR option.

Pred is the predicted value of dependent variable. This column is output only if the PRED
option is specified.

Resid is the residual from the regression. This column is output only if the RESIDUAL option
is specified.

OUTEST= Data Set
PROC HPPANEL writes the parameter estimates to an output data set when the OUTEST= option is specified
in the PROC HPPANEL statement. The OUTEST= data set contains the following variables in the PROC
statement:

_METHOD_ is a character variable that identifies the estimation method.

_TYPE_ is a character variable that identifies the type of observation. Values of the _TYPE_
variable are CORRB, COVB, CSPARMS, STD, and the type of model estimated. The
CORRB observation contains correlations of the parameter estimates; the COVB obser-
vation contains covariances of the parameter estimates; the STD observation indicates
the row of standard deviations of the corresponding coefficients; and the type of model
estimated observation contains the parameter estimates.

_NAME_ is a character variable that contains the name of a regressor variable for COVB and
CORRB observations and is left blank for other observations. The _NAME_ variable is
used in conjunction with the _TYPE_ values COVB and CORRB to identify rows of the
correlation or covariance matrix.

_DEPVAR_ is a character variable that contains the name of the response variable.

_MSE_ is the mean square error of the transformed model.

_VARCS_ is the variance component estimate due to cross sections. The _VARCS_ variable is
included in the OUTEST= data set when the RANONE option is specified in the MODEL
or PROC HPPANEL statement.

_VARTS_ is the variance component estimate due to time series. The _VARTS_ variable is included
in the OUTEST= data set when the RANTWO option is specified in the MODEL or
PROC HPPANEL statement.
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_VARERR_ is the variance component estimate due to error. The _VARERR_ variable is included
in the OUTEST= data set when the RANONE or RANTWO option is specified in the
MODEL or PROC HPPANEL statement.

Intercept is the intercept parameter estimate. (The intercept is missing for models when the NOINT
option is specified in the MODEL statement.)

Regressors are the regressor variables that are specified in the MODEL statement. The regressor
variables in the OUTEST= data set contain the corresponding parameter estimates, and
the corresponding covariance or correlation matrix elements for _TYPE_=COVB and
_TYPE_=CORRB observations.

Printed Output
The printed output from PROC HPPANEL includes the following:

• the model information, which includes the data source, the dependent variable name, the estimation
method used, the execution mode, and for random-effects model analysis, the variance component
estimation method.

• the number of observations

• the fit statistics, which include the sum of squared error (SSE), the degree of freedom for error (DFE),
the mean square error (MSE), the root mean square error (RMSE), and the R-square

• the error components estimates for random-effects model

• the Hausman test statistics, which include the degree of freedom (DF), the test statistics, and the
p-value.

• the regression parameter estimates and analysis, which include for each regressor the name of the
regressor, the degrees of freedom, the parameter estimate, the standard error of the estimate, a t statistic
for testing whether the estimate is significantly different from 0, and the significance probability of the
t statistic

Optionally, PROC HPPANEL prints the following:

• the covariance and correlation of the resulting regression parameter estimates

• the WALD, LR, and LM test statistics for linear equality restrictions that are specified in the TEST
statements

• the timing breakdown of the procedure steps

ODS Table Names
PROC HPPANEL assigns a name to each table it creates. You can use these names to refer to the table when
you use the Output Delivery System (ODS) to select tables and create output data sets. These names are
listed in Table 7.2.
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Table 7.2 ODS Tables Produced in PROC HPPANEL
ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ModelInfo Model information Default
PerformanceInfo Performance information Default
Nobs Number of observations Default
FitStatistics Fit statistics Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlations of parameter estimates CORRB
RandomEffectsTest Hausman test for random effects RANONE,

RANTWO

ODS Tables Created by the TEST Statement
TestResults Test results

ODS Tables Created by the PERFORMANCE Statement
Timing Timing Table

Example: HPPANEL Procedure

Example 7.1: One-Way Random-Effects High-Performance Model
This example shows the use of the one-way random effects model that is available in the HPPANEL procedure
with an emphasis on processing a large data set and on the performance improvements that are achieved by
executing in a high-performance distributed environment.

The following DATA step generates 5 million replications from a one-way panel data that includes 50,000
cross sections and 100 time periods:

data hppan_ex01 (keep = cs ts y x1-x10);
retain seed1 55371 seed2 97335 seed3 19412;
array x[10];
label y = 'dependent var.';
label x1='first independent var.';
label x2='second independent var.';
label x3='third independent var.';
int = 1;
do cs = 1 to 50000;

dummy = 10000*rannor( seed3 );
do ts = 1 to 100;
/*- generate regressors and compute the structural */
/*- part of the dependent variable */
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y = 5; /* intercept */
do k = 1 to 10;

x[k] = (cs + ts ) * (0.001*ranuni( k ) + 1) ;
y = y + x[k] * k;

end;

/*- add an error term, such that e - N(0,100) -------*/
y = y + 10000*rannor( seed2 );
/*- add a random effect, such that e - N(0,100) -------*/
y = y + dummy;
output;

end;
end;

run;

The model is executed in the distributed computing environment with one thread and only one node. These
settings are used to obtain a hypothetical environment that might resemble running the HPPANEL procedure
on a desktop workstation with a single-core CPU. To run the following statements successfully, you need to
set the macro variables GRIDHOST and GRIDINSTALLLOC to resolve to appropriate values, or you can
replace the references to the macro variables in the example with the appropriate values.

option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

proc hppanel data=hppan_ex01 ranone;
id cs ts;
model y = x1-x10;
performance nodes = 1 threads = 1 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;

In Output 7.1.1, the “Performance Information” table shows that the model was estimated on the grid that
is defined in a macro variable named GRIDHOST in a distributed environment on only one node with one
thread. The grid install location is defined in a macro variable named GRIDINSTALLLOC.

Output 7.1.1 Grid Information with One Node and One Thread

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 1

Number of Threads per Node 1

Output 7.1.2 shows the results for the one-way random effects model. The “Model Information” table shows
detailed information about the model. The “Number of Observations” table indicates that all 5 million
observations were used to fit the model. All parameter estimates in the “Parameter Estimates” table are highly
significant and correspond to the theoretical values that were set for them during the data generating process.
In the “Timing” table, you can see that for 5 million observations, computing moments took 5840.62 seconds,
and the cross-product accumulation took 278.51 seconds.
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Output 7.1.2 One-Way Random Effects Model

Model Information

Data Source HPPAN_EX01

Response Variable y

Model RANONE

Variance Component WANSBEEK

Execution Mode Distributed

Fit Statistics

Sum of Squared Error 5.00008E14

Degree of Freedom 4999989

Mean Squared Error 100001811

Root Mean Squared Error 10000

R-Square 0.98318

Variance Component Estimates

Variance Component for Cross Sections 1.0704E8

Variance Component for Error 1.0007E8

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value Pr > |t|

Intercept 1 27.06229 93.06534 0.29 0.7712

x1 1 0.44857 0.51089 0.88 0.3799

x2 1 2.18393 0.51098 4.27 <.0001

x3 1 2.70052 0.51099 5.28 <.0001

x4 1 4.49262 0.51100 8.79 <.0001

x5 1 5.54728 0.51076 10.86 <.0001

x6 1 6.50872 0.51088 12.74 <.0001

x7 1 6.54937 0.51098 12.82 <.0001

x8 1 7.09160 0.51090 13.88 <.0001

x9 1 8.64988 0.51092 16.93 <.0001

x10 1 10.82664 0.51051 21.21 <.0001

Procedure Task Timing

Task Seconds Percent

Data Read and Variable Levelization 2.60 0.04%

Communication to Client 0.00 0.00%

Computing Moments 5840.62 95.41%

Cross-Product Accumulation 278.51 4.55%

In the following statements, the PERFORMANCE statement is modified to request a grid that has 10 nodes,
where each node spawns one thread:

proc hppanel data=hppan_ex01 ranone;
id cs ts;
model y = x1-x10;
performance nodes = 10 threads = 1 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;
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In Output 7.1.3, the “Performance Information” table shows that the model was estimated on the grid that is
defined in a macro variable named GRIDHOST in a distributed environment on 10 nodes with one thread
each. The grid install location is defined in a macro variable named GRIDINSTALLLOC.

Output 7.1.3 Grid Information for 10 Nodes with One Thread Each

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 10

Number of Threads per Node 1

Although the two models are identical, estimating the model took only 12 minutes for the second implemen-
tation, which was run on a grid that used 10 nodes with one thread each, instead of 1 hour and 37 minutes for
the first implementation.

Output 7.1.4 Timing Information for 10 Nodes with One Thread Each

Procedure Task Timing

Task Seconds Percent

Data Read and Variable Levelization 0.25 0.03%

Communication to Client 0.00 0.00%

Computing Moments 712.46 96.25%

Cross-Product Accumulation 27.50 3.71%

References

Davidson, R. and MacKinnon, J. G. (1993), Estimation and Inference in Econometrics, New York: Oxford
University Press.

Fuller, W. A. and Battese, G. E. (1974), “Estimation of Linear Models with Crossed-Error Structure,” Journal
of Econometrics, 2, 67–78.

Greene, W. H. (1990), Econometric Analysis, New York: Macmillan.

Greene, W. H. (2000), Econometric Analysis, 4th Edition, Upper Saddle River, NJ: Prentice-Hall.

Hausman, J. A. (1978), “Specification Tests in Econometrics,” Econometrica, 46, 1251–1271.

Hausman, J. A. and Taylor, W. E. (1982), “A Generalized Specification Test,” Economics Letters, 8, 239–245.

Nerlove, M. (1971), “Further Evidence on the Estimation of Dynamic Relations from a Time Series of Cross
Sections,” Econometrica, 39, 359–382.

Wallace, T. and Hussain, A. (1969), “The Use of Error Components Model in Combining Cross Section with
Time Series Data,” Econometrica, 37, 55–72.



References F 179

Wansbeek, T. and Kapteyn, A. (1989), “Estimation of the Error-Components Model with Incomplete Panels,”
Journal of Econometrics, 41, 341–361.

Wu, D. M. (1973), “Alternative Tests of Independence between Stochastic Regressors and Disturbances,”
Econometrica, 41, 733–750.



180



Chapter 8

The HPQLIM Procedure

Contents
Overview: HPQLIM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

PROC HPQLIM Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Getting Started: HPQLIM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Syntax: HPQLIM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Functional Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
PROC HPQLIM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
BAYES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
BOUNDS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
ENDOGENOUS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
HETERO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
INIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
MODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
OUTPUT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
PERFORMANCE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
PRIOR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
RESTRICT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
TEST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Details: HPQLIM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Ordinal Discrete Choice Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Limited Dependent Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Stochastic Frontier Production and Cost Models . . . . . . . . . . . . . . . . . . . . 209
Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Tests on Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Bayesian Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Prior Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Output to SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
OUTEST= Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
ODS Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Examples: The HPQLIM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Example 8.1: High-Performance Model with Censoring . . . . . . . . . . . . . . . . 222
Example 8.2: Bayesian High-Performance Model with Censoring . . . . . . . . . . . 226

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229



182 F Chapter 8: The HPQLIM Procedure

Overview: HPQLIM Procedure
The HPQLIM (high-performance qualitative and limited dependent variable model) procedure is a high-
performance version of the QLIM procedure in SAS/ETS software, which analyzes univariate limited
dependent variable models in which dependent variables are observed only in a limited range of values.
Unlike the QLIM procedure, which can be run only on an individual workstation, the HPQLIM procedure
takes advantage of a computing environment that enables it to distribute the optimization task to one or more
nodes. In addition, each node can use one or more threads to perform the optimization on its subset of the
data. When several nodes are used and each node uses several threads to carry out its part of the work, the
result is a highly parallel computation that provides a dramatic gain in performance.

With the HPQLIM procedure you can read and write data in distributed form and perform analyses in
distributed mode and single-machine mode. For more information about how to affect the execution mode of
SAS high-performance analytical procedures, see the section “Processing Modes” on page 10 in Chapter 3,
“Shared Concepts and Topics.”

The HPQLIM procedure is specifically designed to operate in the high-performance distributed environment.
It can use maximum likelihood or Bayesian methods. In both cases, the likelihood evaluation is performed in
a distributed environment. By default, PROC HPQLIM uses multiple threads to perform computations.

The HPQLIM procedure is similar in use to the other SAS procedures that support regression or simultaneous
equations models. For example, the standard model with censoring or truncation is estimated by specifying
the endogenous variable to be truncated or censored. When the data are limited by specific values or variables,
the limits of the dependent variable can be specified with the CENSORED or TRUNCATED option in the
ENDOGENOUS or MODEL statement. For example, the two-limit censored model requires two variables:
one that contains the lower (bottom) bound and one that contains the upper (top) bound. The following
statements execute the model in the distributed computing environment with two threads and four nodes:

proc hpqlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=bottom ub=top);
performance nthreads=2 nodes=4 details;

run;

The bounds can be numbers if they are fixed for all observations in the data set. For example, the standard
Tobit model can be specified as follows:

proc hpqlim data=a;
model y = x1 x2 x3;
endogenous y ~ censored(lb=0);
performance nthreads=2 nodes=4 details;

run;
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PROC HPQLIM Features
The HPQLIM procedure supports the following models:

• linear regression models with heteroscedasticity

• Tobit models (censored and truncated) with heteroscedasticity

• stochastic frontier production and cost models

In linear regression models with heteroscedasticity, the assumption that error variance is constant across
observations is relaxed. The HPQLIM procedure allows for a number of different linear and nonlinear
variance specifications.

The HPQLIM procedure also offers a class of models in which the dependent variable is censored or truncated
from below or above or both. When a continuous dependent variable is observed only within a certain range,
and values outside this range are not available, the HPQLIM procedure offers a class of models that adjust
for truncation. In some cases, the dependent variable is continuous only in a certain range, and all values
outside this range are reported as being on its boundary. For example, if it is not possible to observe negative
values, the value of the dependent variable is reported as equal to 0. Because the data are censored, ordinary
least squares (OLS) results are inconsistent, and it cannot be guaranteed that the predicted values from the
model will fall in the appropriate region.

Stochastic frontier production and cost models allow for random shocks of the production or cost. They
include a systematic positive component in the error term that adjusts for technical or cost inefficiency.

The HPQLIM procedure can use maximum likelihood or Bayesian methods. Initial starting values for the
nonlinear optimizations are typically calculated by OLS. Initial values for the Bayesian sampling are typically
calculated by maximum likelihood.

Getting Started: HPQLIM Procedure
This example illustrates the use of the HPQLIM procedure. The data were originally published by Mroz
(1987), and the following statements show a subset of the Mroz (1987) data set:

title1 'Estimating a Tobit model';

data subset;
input Hours Yrs_Ed Yrs_Exp @@;
if Hours eq 0 then Lower=.;

else Lower=Hours;
datalines;
0 8 9 0 8 12 0 9 10 0 10 15 0 11 4 0 11 6
1000 12 1 1960 12 29 0 13 3 2100 13 36
3686 14 11 1920 14 38 0 15 14 1728 16 3
1568 16 19 1316 17 7 0 17 15
;
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In these data, Hours is the number of hours that the wife worked outside the household in a given year,
Yrs_Ed is the years of education, and Yrs_Exp is the years of work experience.

By the nature of the data it is clear that there are a number of women who committed some positive number
of hours to outside work (yi > 0 is observed). There are also a number of women who did not work outside
the home at all (yi D 0 is observed). This yields the following model:

y�i D x0iˇ C �i

yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � i idN.0; �2/ and the set of explanatory variables is denoted by xi . The following statements fit a
Tobit model to the hours worked with years of education and years of work experience as covariates:

/*-- Tobit Model --*/
proc hpqlim data=subset;

model hours = yrs_ed yrs_exp;
endogenous hours ~ censored(lb=0);
performance nthreads=2 nodes=4 details;

run;

The output of the HPQLIM procedure is shown in Output 8.1.

Figure 8.1 Tobit Analysis Results

Estimating a Tobit model

The HPQLIM Procedure

Estimating a Tobit model

The HPQLIM Procedure

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable Hours

Number of Observations 17

Log Likelihood -74.93700

Maximum Absolute Gradient 1.18953E-6

Number of Iterations 23

Optimization Method Quasi-Newton

AIC 157.87400

Schwarz Criterion 161.20685

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 -5598.295129 27.692220 -202.16 <.0001

Yrs_Ed 1 373.123254 53.988877 6.91 <.0001

Yrs_Exp 1 63.336247 36.551299 1.73 0.0831

_Sigma 1 1582.859635 390.076480 4.06 <.0001

The “Parameter Estimates” table contains four rows. The first three rows correspond to the vector estimate of
the regression coefficients ˇ. The last row is called _Sigma, which corresponds to the estimate of the error
variance � .



Syntax: HPQLIM Procedure F 185

Syntax: HPQLIM Procedure
The following statements are available in the HPQLIM procedure:

PROC HPQLIM options ;
BAYES < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
FREQ variable ;
ENDOGENOUS variables � options ;
HETERO dependent variables � exogenous variables / options ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent variables = regressors / options ;
OUTPUT options ;
PRIOR variables � distributions ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST options ;
WEIGHT variable ;

One MODEL statement is required. If a FREQ or WEIGHT statement is specified more than once, the
variable that is specified in the first instance is used.

Functional Summary
Table 8.1 summarizes the statements and options used with the HPQLIM procedure.

Table 8.1 PROC HPQLIM Functional Summary

Description Statement Option

Data Set Options
Specifies the input data set PROC HPQLIM DATA=
Writes parameter estimates to an output data set PROC HPQLIM OUTEST=
Writes predictions to an output data set OUTPUT OUT=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies a frequency variable FREQ
Specifies a weight variable WEIGHT NONORMALIZE

Printing Control Options
Requests all printing options PROC HPQLIM PRINTALL
Prints the correlation matrix of the estimates PROC HPQLIM CORRB
Prints the covariance matrix of the estimates PROC HPQLIM COVB
Suppresses the normal printed output PROC HPQLIM NOPRINT
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Table 8.1 continued

Description Statement Option

Plotting Options
Displays plots PROC HPQLIM PLOTS=

Optimization Process Control Options
Selects the iterative minimization method to use PROC HPQLIM METHOD=
Specifies the maximum number of iterations allowed PROC HPQLIM MAXITER=
Specifies the maximum number of function calls PROC HPQLIM MAXFUNC=
Specifies the upper limit of CPU time in seconds PROC HPQLIM MAXTIME=
Specifies an absolute convergence criterion PROC HPQLIM ABSCONV=
Specifies an absolute function convergence criterion PROC HPQLIM ABSFCONV=
Specifies an absolute gradient convergence criterion PROC HPQLIM ABSGCONV=
Specifies a relative function convergence criterion PROC HPQLIM FCONV=
Specifies a relative gradient convergence criterion PROC HPQLIM GCONV=
Specifies an absolute parameter convergence crite-
rion

PROC HPQLIM ABSXCONV=

Specifies a matrix singularity criterion PROC HPQLIM SINGULAR=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT

Model Estimation Options
Suppresses the intercept parameter MODEL NOINT
Specifies the method to calculate parameter covari-
ance

PROC HPQLIM COVEST=

Bayesian MCMC Options
Specifies the initial values of the MCMC INIT
Specifies the maximum number of tuning phases BAYES MAXTUNE=
Specifies the minimum number of tuning phases BAYES MINTUNE=
Specifies the number of burn-in iterations BAYES NBI=
Specifies the number of iterations during the sam-
pling phase

BAYES NMC=

Specifies the number of iterations during the tuning
phase

BAYES NTU=

Controls options for constructing the initial proposal
covariance matrix

BAYES PROPCOV

Specifies the sampling scheme BAYES SAMPLING=
Specifies the random number generator seed BAYES SEED=
Controls the thinning of the Markov chain BAYES THIN=

Bayesian Summary Statistics and Convergence Diagnostic Options
Displays convergence diagnostics BAYES DIAGNOSTICS=
Displays summary statistics of the posterior samples BAYES STATISTICS=
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Table 8.1 continued

Description Statement Option

Bayesian Prior and Posterior Sample Options
Specifies a SAS data set for the posterior samples BAYES OUTPOST=

Bayesian Analysis Options
Specifies the normal prior distribution PRIOR NORMAL(MEAN=,

VAR=)
Specifies the gamma prior distribution PRIOR GAMMA(SHAPE=,

SCALE=)
Specifies the inverse gamma prior distribution PRIOR IGAMMA(SHAPE=,

SCALE=)
Specifies the uniform prior distribution PRIOR UNIFORM(MIN=,

MAX=)
Specifies the beta prior distribution PRIOR BETA(SHAPE1=,

SHAPE2=,
MIN=, MAX=)

Specifies the t prior distribution PRIOR T(LOCATION=, DF=)

Endogenous Variable Options
Specifies a discrete variable ENDOGENOUS DISCRETE()
Specifies a censored variable ENDOGENOUS CENSORED()
Specifies a truncated variable ENDOGENOUS TRUNCATED()
Specifies a stochastic frontier variable ENDOGENOUS FRONTIER()

Heteroscedasticity Model Options
Specifies the function for heteroscedasticity models HETERO LINK=
Squares the function for heteroscedasticity models HETERO SQUARE
Specifies no constant for heteroscedasticity models HETERO NOCONST

Output Control Options
Outputs predicted values OUTPUT PREDICTED
Outputs the structured part OUTPUT XBETA
Outputs residuals OUTPUT RESIDUAL
Outputs the error standard deviation OUTPUT ERRSTD
Outputs marginal effects OUTPUT MARGINAL
Outputs probability for the current response OUTPUT PROB
Outputs probability for all responses OUTPUT PROBALL
Outputs the expected value OUTPUT EXPECTED
Outputs the conditional expected value OUTPUT CONDITIONAL
Outputs inverse Mills ratio OUTPUT MILLS
Outputs technical efficiency measures OUTPUT TE1

OUTPUT TE2
Includes covariances in the OUTEST= data set PROC HPQLIM COVOUT
Includes correlations in the OUTEST= data set PROC HPQLIM CORROUT
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Table 8.1 continued

Description Statement Option

Test Request Options
Requests Wald, Lagrange multiplier, and likelihood
ratio tests

TEST ALL

Requests the Wald test TEST WALD
Requests the Lagrange multiplier test TEST LM
Requests the likelihood ratio test TEST LR

PROC HPQLIM Statement
PROC HPQLIM options ;

The PROC HPQLIM statement invokes the HPQLIM procedure. You can specify the following options.

Data Set Options

DATA=SAS-data-set
specifies the input SAS data set. If this option is not specified, PROC HPQLIM uses the most recently
created SAS data set.

Output Data Set Options

OUTEST=SAS-data-set
writes the parameter estimates to an output data set.

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

CORROUT
writes the correlation matrix for the parameter estimates to the OUTEST= data set. This option is valid
only if the OUTEST= option is specified.

Printing Options

NOPRINT
suppresses the normal printed output but does not suppress error listings. If this option is specified,
then any other print option is turned off.

PRINTALL
turns on all the printing options. The options that are set by PRINTALL are COVB and CORRB.
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CORRB
prints the correlation matrix of the parameter estimates.

COVB
prints the covariance matrix of the parameter estimates.

Model Estimation Options

COVEST=covariance-option
specifies the method for calculating the covariance matrix of parameter estimates. You can specify the
following covariance-options.

OP specifies the covariance from the outer product matrix.

HESSIAN specifies the covariance from the inverse Hessian matrix.

QML specifies the covariance from the outer product and Hessian matrices (the quasi-
maximum likelihood estimates).

The default is COVEST=HESSIAN.

Optimization Control Options

PROC HPQLIM uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization tasks.
You can specify the following options:

ABSCONV=r

ABSTOL=r
specifies an absolute function value convergence criterion by which minimization stops when
f .� .k// � r . The default value of r is the negative square root of the largest double-precision
value, which serves only as a protection against overflows.

ABSFCONV=r

ABSFTOL=r
specifies an absolute function difference convergence criterion by which minimization stops when the
function value has a small change in successive iterations:

jf .� .k�1// � f .� .k//j � r

The default value is r D 0.

ABSGCONV=r

ABSGTOL=r
specifies an absolute gradient convergence criterion. Optimization stops when the maximum absolute
gradient element is small:

max
j
jgj .�

.k//j � r

The default value is r=1E–5.
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ABSXCONV=r

ABSXTOL=r
specifies an absolute parameter convergence criterion. Optimization stops when the Euclidean distance
between successive parameter vectors is small:

k � .k/ � � .k�1/ k2� r

The default is 0.

FCONV=r

FTOL=r
specifies a relative function convergence criterion. Optimization stops when a relative change of the
function value in successive iterations is small:

jf .� .k// � f .� .k�1//j

jf .� .k�1//j
� r

The default value is r D 2�, where � denotes the machine precision constant, which is the smallest
double-precision floating-point number such that 1C � > 1.

GCONV=r

GTOL=r
specifies a relative gradient convergence criterion. For all techniques except CONGRA, optimization
stops when the normalized predicted function reduction is small:

g.� .k//T ŒH .k/��1g.� .k//

jf .� .k//j
� r

For the CONGRA technique (where a reliable Hessian estimate H is not available), the following
criterion is used:

k g.� .k// k22 k s.� .k// k2

k g.� .k// � g.� .k�1// k2 jf .� .k//j
� r

The default value is r D1E–8.

MAXFUNC=i

MAXFU=i
specifies the maximum number of function calls in the optimization process. The default is 1,000.

The optimization can terminate only after completing a full iteration. Therefore, the number of function
calls that are actually performed can exceed the number of calls that are specified by this option.

MAXITER=i

MAXIT=i
specifies the maximum number of iterations in the optimization process. The default is 200.

MAXTIME=r
specifies an upper limit of r seconds of CPU time for the optimization process. The default value is
the largest floating-point double representation of your computer. The time that is specified by this
option is checked only once at the end of each iteration. Therefore, the actual running time can be
much longer than r . The actual running time includes the remaining time needed to finish the iteration
and the time needed to generate the output of the results.
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METHOD=value
specifies the iterative minimization method to use. The default is METHOD=NEWRAP. You can
specify the following values:

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double dogleg method.

NONE specifies that no optimization be performed beyond using the ordinary least squares
method to compute the parameter estimates.

NEWRAP specifies the Newton-Raphson method (the default).

NRRIDG specifies the Newton-Raphson Ridge method.

QUANEW specifies the quasi-Newton method.

TRUREG specifies the trust region method.

SINGULAR=r
specifies the general singularity criterion that is applied by the HPQLIM procedure in sweeps and
inversions. The default for the optimization is 1E–8.

Plotting Options

PLOTS< (global-plot-options) > = plot-request | (plot-requests)
controls the display of plots. By default, the plots are displayed in panels unless the UNPACK global-
plot-option is specified. When you specify only one plot-request , you can omit the parentheses around
it.

Global Plot Options
You can specify the following global-plot-options:

ONLY
displays only the requested plot.

UNPACKPANEL

UNPACK
specifies that all paneled plots be unpacked, meaning that each plot in a panel is displayed separately.

Plot Requests
You can specify the following plot-requests:

ALL
specifies all types of available plots.

AUTOCORR< (LAGS=n) >
displays the autocorrelation function plots for the parameters. The optional LAGS= suboption specifies
the number (up to lag n) of autocorrelations to be plotted in the autocorrelation function plot. If this
suboption is not specified, autocorrelations are plotted up to lag 50. This plot-request is available only
for Bayesian analysis.
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BAYESDIAG
is equivalent to specifying the TRACE, AUTOCORR, and DENSITY plot-requests.

DENSITY< (FRINGE) >
displays the kernel density plots for the parameters. If you specify the FRINGE suboption, a fringe
plot is created on the X axis of the kernel density plot. This plot-request is available only for Bayesian
analysis.

NONE
suppresses all diagnostic plots.

TRACE< (SMOOTH) >
displays the trace plots for the parameters. The SMOOTH suboption displays a fitted penalized B-spline
curve for each plot. This plot-request is available only for Bayesian analysis.

BAYES Statement
BAYES < options > ;

The BAYES statement controls the Metropolis sampling scheme that is used to obtain samples from the
posterior distribution of the underlying model and data.

DIAGNOSTICS=ALL | NONE | (keyword-list)

DIAG=ALL | NONE | (keyword-list)
controls which diagnostics are produced. All the following diagnostics are produced when you specify
DIAGNOSTICS=ALL. If you do not want any of these diagnostics, specify DIAGNOSTICS=NONE.
If you want some but not all of the diagnostics, or if you want to change certain settings of these
diagnostics, specify one or more of the following keywords. The default is DIAGNOSTICS=NONE.

AUTOCORR < (LAGS=numeric-list) >
computes the autocorrelations at lags that are specified in the numeric-list . Elements in the
numeric-list are truncated to integers, and repeated values are removed. If the LAGS= option is
not specified, autocorrelations of lags 1, 5, and 10 are computed.

ESS
computes Carlin’s estimate of the effective sample size, the correlation time, and the efficiency of
the chain for each parameter.

GEWEKE < (geweke-options) >
computes the Geweke spectral density diagnostics, which are essentially a two-sample t test
between the first f1 portion and the last f2 portion of the chain. The defaults are f1 D 0:1 and
f2 D 0:5, but you can choose other fractions by using the following geweke-options:

FRAC1=value
specifies the fraction f1 for the first window.

FRAC2=value
specifies the fraction f2 for the second window.
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HEIDELBERGER < (heidel-options) >
computes for each variable the Heidelberger and Welch diagnostic, which consists of a stationarity
test of the null hypothesis that the sample values form a stationary process. If the stationarity test
is not rejected, a halfwidth test is then carried out. Optionally, you can specify one or more of the
following heidel-options:

EPS=value
specifies a positive number � such that if the halfwidth is less than � times the sample mean
of the retained iterates, the halfwidth test is passed.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test.

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test.

MCSE

MCERROR
computes the Monte Carlo standard error for each parameter. The Monte Carlo standard error,
which measures the simulation accuracy, is the standard error of the posterior mean estimate and
is calculated as the posterior standard deviation divided by the square root of the effective sample
size.

RAFTERY< (raftery-options) >
computes the Raftery and Lewis diagnostics, which evaluate the accuracy of the estimated
quantile ( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy
when the chain is allowed to run for a long time. The computation stops when the estimated
probability OPQ D Pr.� � O�Q/ reaches within ˙R of the value Q with probability S ; that is,
Pr.Q �R � OPQ � QCR/ D S . The following raftery-options enable you to specify Q;R; S ,
and a precision level � for the test:

QUANTILE | Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. The default is 0.025.

ACCURACY | R=value
specifies a small positive number as the margin of error for measuring the accuracy of the
estimation of the quantile. The default is 0.005.

PROBABILITY | S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. The
default is 0.95.

EPSILON | EPS=value
specifies the tolerance level (a small positive number) for the stationary test. The default is
0.001.

MINTUNE=number
specifies the minimum number of tuning phases. The default is 2.
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MAXTUNE=number
specifies the maximum number of tuning phases. The default is 24.

NBI=number
specifies the number of burn-in iterations before the chains are saved. The default is 1,000.

NMC=number
specifies the number of iterations after the burn-in. The default is 1,000.

NTU=number
specifies the number of samples for each tuning phase. The default is 500.

OUTPOST=SAS-data-set
names the SAS data set to contain the posterior samples. Alternatively, you can create the output data
set by specifying an ODS OUTPUT statement as follows:

ODS OUTPUT POSTERIORSAMPLE = < SAS-data-set > ;

PROPCOV=value
specifies the method that is used in constructing the initial covariance matrix for the Metropolis-
Hastings algorithm. The QUANEW and NMSIMP methods find numerically approximated covariance
matrices at the optimum of the posterior density function with respect to all continuous parameters. The
tuning phase starts at the optimized values; in some problems, this can greatly increase convergence
performance. If the approximated covariance matrix is not positive definite, then an identity matrix is
used instead. You can specify the following values:

CONGRA
performs a conjugate-gradient optimization.

DBLDOG
performs a version of double-dogleg optimization.

NEWRAP
performs a Newton-Raphson optimization that combines a line-search algorithm with ridging.

NMSIMP
performs a Nelder-Mead simplex optimization.

NRRIDG
performs a Newton-Raphson optimization with ridging.

QUANEW
performs a quasi-Newton optimization.

TRUREG
performs a trust-region optimization.

SAMPLING=MULTIMETROPOLIS | UNIMETROPOLIS
specifies how to sample from the posterior distribution. SAMPLING=MULTIMETROPOLIS imple-
ments a Metropolis sampling scheme on a single block that contains all the parameters of the model.
SAMPLING=UNIMETROPOLIS implements a Metropolis sampling scheme on multiple blocks, one
for each parameter of the model. The default is SAMPLING=MULTIMETROPOLIS.
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SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator in the simulation.
Specifying a seed enables you to reproduce identical Markov chains for the same specification. If you
do not specify the SEED= option, or if you specify a nonpositive seed, a random seed is derived from
the time of day.

STATISTICS < (global-options) > = ALL | NONE | keyword | (keyword-list)

STATS < (global-options) > = ALL | NONE | keyword | (keyword-list)
controls the number of posterior statistics that are produced. Specifying STATISTICS=ALL is
equivalent to specifying STATISTICS=(CORR COV INTERVAL PRIOR SUMMARY). If you do not
want any posterior statistics, specify STATISTICS=NONE. The default is STATISTICS=(SUMMARY
INTERVAL). You can specify the following global-options:

ALPHA=value < ,value >. . . < ,value >
controls the probabilities of the credible intervals. The value, which must be between 0 and 1,
produces a pair of 100(1–value)% equal-tail and highest posterior density (HPD) intervals for
each parameter. The default is ALPHA=0.05, which yields the 95% credible intervals for each
parameter.

PERCENT=value < ,value >. . . < ,value >
requests the percentile points of the posterior samples. The value must be between 0 and 100.
The default is PERCENT=25, 50, 75, which yields the 25th, 50th, and 75th percentile points,
respectively, for each parameter.

You can specify the following keywords:

CORR
produces the posterior correlation matrix.

COV
produces the posterior covariance matrix.

INTERVAL
produces equal-tail credible intervals and HPD intervals. The default is to produce the 95%
equal-tail credible intervals and 95% HPD intervals, but you can use the ALPHA= global-option
to request intervals of any probabilities.

NONE
suppresses printing of all summary statistics.

PRIOR
produces a summary table of the prior distributions that are used in the Bayesian analysis.

SUMMARY
produces the means, standard deviations, and percentile points (25th, 50th, and 75th) for the
posterior samples. You can use the PERCENT= global-option to request specific percentile
points.
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THIN=number

THINNING=number
controls the thinning of the Markov chain. Only one in every k samples is used when THIN=k. If
NBI=n0 and NMC=n, the number of samples that are retained is�

n0 C n

k

�
�

�
n0

k

�
where [a] represents the integer part of the number a. The default is THIN=1.

BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. BOUNDS
statement constraints refer to the parameters that are estimated by the HPQLIM procedure. You can specify
any number of BOUNDS statements.

Each bound is composed of parameters, constants, and inequality operators. Parameters that are associated
with regressor variables are referred to by the names of the corresponding regressor variables. Specify each
bound as follows:

item operator item < operator item < operator item . . . > >

Each item is a constant, the name of a parameter, or a list of parameter names. For more information about
how parameters are named in the HPQLIM procedure, see the section “Naming of Parameters” on page 220.
Each operator is <, >, <=, or >=.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these types of constraints. For
more information, see the section “RESTRICT Statement” on page 205.

The following BOUNDS statement constrains the estimates of the parameters that are associated with the
variable ttime and the variables x1 through x10 to be between 0 and 1. The following example illustrates the
use of parameter lists to specify boundary constraints.

bounds 0 < ttime x1-x10 < 1;

The following BOUNDS statement constrains the estimates of the correlation (_RHO) and sigma (_SIGMA)
in the bivariate model:

bounds _rho >= 0, _sigma.y1 > 1, _sigma.y2 < 5;

BY Statement
BY variables ;
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A BY statement can be used with PROC HPQLIM to obtain separate analyses on observations in groups
defined by the BY variables.

BY statement processing is not supported when the HPQLIM procedure runs alongside the database or
alongside the Hadoop Distributed File System (HDFS). These modes are used if the input data are stored in a
database or HDFS and the grid host is the appliance that houses the data.

ENDOGENOUS Statement
ENDOGENOUS variables � options ;

The ENDOGENOUS statement specifies the type of dependent variables that appear on the left-hand side of
the equation. The listed endogenous variables refer to the dependent variables that appear on the left-hand
side of the equation. Currently, no right-hand-side endogeneity is handled in PROC HPQLIM. All variables
that appear on the right-hand side of the equation are treated as exogenous.

Discrete Variable Options

DISCRETE < (discrete-options ) >
specifies that the endogenous variables in this statement be discrete. You can specify the following
discrete-options:

DISTRIBUTION=distribution-type

DIST=distribution-type

D=distribution-type
specifies the cumulative distribution function that is used to model the response probabilities. You can
specify the following distribution-types:

LOGISTIC specifies the logistic distribution for the logit model.

NORMAL specifies the normal distribution for the probit model.

By default, DISTRIBUTION=NORMAL.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the discrete variables that are specified in the ENDOGENOUS
statement. This ordering determines which parameters in the model correspond to each level in the
data. You can specify the following sort orders:

DATA sorts levels by order of appearance in the input data set.

FORMATTED sorts levels by formatted value. The sort order is machine-dependent.

FREQ sorts levels by descending frequency count; levels that have the most observations
come first in the order.

INTERNAL sorts levels by unformatted value. The sort order is machine-dependent.

By default, ORDER=FORMATTED. For more information about sort order, see the chapter on the
SORT procedure in the Base SAS Procedures Guide.
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Censored Variable Options

CENSORED (censored-options )
specifies that the endogenous variables in this statement be censored. You can specify the following
censored-options:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the censored variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the censored variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Truncated Variable Options

TRUNCATED (truncated-options )
You can specify the following truncated-options:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the truncated variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the truncated variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Stochastic Frontier Variable Options

FRONTIER < (frontier-options ) >
You can specify the following frontier-options:

TYPE=HALF | EXPONENTIAL | TRUNCATED
specifies the model type.

HALF
specifies half-normal model.

EXPONENTIAL
specifies exponential model.

TRUNCATED
specifies truncated normal model.
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PRODUCTION
specifies that the estimated model be a production function.

COST
specifies that the estimated model be a cost function.

If neither PRODUCTION nor COST is specified, a production function is estimated by default.

FREQ Statement
FREQ variable ;

The FREQ statement identifies a variable that contains the frequency of occurrence of each observation.
PROC HPQLIM treats each observation as if it appeared n times, where is the value of the FREQ variable for
the observation. If the frequency value is not an integer, it is truncated to an integer. If the frequency value
is less than 1 or missing, the observation is not used in the model fitting. When the FREQ statement is not
specified, each observation is assigned a frequency of 1. If you specify more than one FREQ statement, then
the first FREQ statement is used.

HETERO Statement
HETERO dependent variables � exogenous variables < / options > ;

The HETERO statement specifies variables that are related to the heteroscedasticity of the residuals and
the way that these variables are used to model the error variance. PROC HPQLIM supports the following
heteroscedastic regression model:

yi D x0iˇ C �i

�i � N.0; �2i /

For more information about the specification of functional forms, see the section “Heteroscedasticity” on
page 210. The following options specify the functional forms of heteroscedasticity:

LINK=EXP | LINEAR
specifies the functional form.

EXP
specifies the exponential link function:

�2i D �2.1C exp.z
0

i//

LINEAR
specifies the linear link function:

�2i D �2.1C z
0

i/

The default is LINK=EXP.



200 F Chapter 8: The HPQLIM Procedure

NOCONST
specifies that there be no constant in the linear or exponential heteroscedasticity model:

�2i D �2.z
0

i/

�2i D �2exp.z
0

i/

This option is ignored if you do not specify the LINK= option.

SQUARE
estimates the model by using the square of the linear heteroscedasticity function. For example, you can
specify the following heteroscedasticity function:

�2i D �
2.1C .z

0

i/
2/

model y = x1 x2 / censored(lb=0);
hetero y ~ z1 / link=linear square;

The SQUARE option does not apply to the exponential heteroscedasticity function because the square
of an exponential function of z

0

i is the same as the exponential of 2z
0

i . Hence, the only difference is
that all  estimates are divided by two.

This option is ignored if you do not specify the LINK= option. You cannot use the HETERO statement
within a Bayesian framework.

INIT Statement
INIT initvalue1 < , initvalue2 . . . > ;

The INIT statement sets initial values for parameters in the optimization. You can specify any number of
INIT statements.

Each initvalue is written as a parameter or parameter list, followed by an optional equality operator (=),
followed by a number:

parameter <=> number

MODEL Statement
MODEL dependent = regressors < / options > ;

The MODEL statement specifies the dependent variable and independent regressor variables for the regression
model.

You can specify the following option after a slash (/).

NOINT
suppresses the intercept parameter.

You can also specify the following endogenous variable options, which are the same as the options that are
specified in the ENDOGENOUS statement. If an endogenous variable option is specified in both the MODEL
statement and the ENDOGENOUS statement, the option in the ENDOGENOUS statement is used.
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Discrete Variable Options

DISCRETE < (discrete-options ) >
specifies that the endogenous variables in this statement be discrete. You can specify the following
discrete-options:

DISTRIBUTION=distribution-type

DIST=distribution-type

D=distribution-type
specifies the cumulative distribution function that is used to model the response probabilities. You can
specify the following distribution-types:

LOGISTIC specifies the logistic distribution for the logit model.

NORMAL specifies the normal distribution for the probit model.

By default, DISTRIBUTION=NORMAL.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the discrete variables that are specified in the ENDOGENOUS
statement. This ordering determines which parameters in the model correspond to each level in the
data. You can specify the following sort orders:

DATA sorts levels by order of appearance in the input data set.

FORMATTED sorts levels by formatted value. The sort order is machine-dependent.

FREQ sorts levels by descending frequency count; levels that have the most observations
come first in the order.

INTERNAL sorts levels by unformatted value. The sort order is machine-dependent.

By default, ORDER=FORMATTED. For more information about sort order, see the chapter on the
SORT procedure in the Base SAS Procedures Guide.

Censored Variable Options

CENSORED < (censored-options ) >
specifies that the endogenous variables in this statement be censored. You can specify the following
censored-options:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the censored variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the censored variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.
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Truncated Variable Options

TRUNCATED < (truncated-options ) >
You can specify the following truncated-options:

LB=value | variable

LOWERBOUND=value | variable
specifies the lower bound of the truncated variables. If value is missing or the value in variable is
missing, no lower bound is set. By default, no lower bound is set.

UB=value | variable

UPPERBOUND=value | variable
specifies the upper bound of the truncated variables. If value is missing or the value in variable is
missing, no upper bound is set. By default, no upper bound is set.

Stochastic Frontier Variable Options

FRONTIER < (frontier-options ) >
You can specify the following frontier-options:

TYPE=HALF | EXPONENTIAL | TRUNCATED
specifies the model type.

HALF
specifies a half-normal model.

EXPONENTIAL
specifies an exponential model.

TRUNCATED
specifies a truncated normal model.

PRODUCTION
specifies that the estimated model be a production function.

COST
specifies that the estimated model be a cost function.

If neither PRODUCTION nor COST is specified, a production function is estimated by default.

OUTPUT Statement
OUTPUT OUT=SAS-data-set < output-options > ;

The OUTPUT statement creates a new SAS data set to contain variables that are specified with the COPYVAR
option and the following data if they are specified by output-options: estimates of x0ˇ, predicted value,
residual, marginal effects, probability, standard deviation of the error, expected value, conditional expected
value, technical efficiency measures, and inverse Mills ratio. When the response values are missing for the
observation, all output estimates except the residual are still computed as long as none of the explanatory
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variables are missing. This enables you to compute these statistics for prediction. You can specify only one
OUTPUT statement.

You must specify the OUT= option:

OUT=SAS-data-set
names the output data set.

COPYVAR=SAS-variable-names

COPYVARS=(SAS-variable-names)
adds SAS variables to the output data set

You can specify one or more of the following output-options:

CONDITIONAL
outputs estimates of conditional expected values of continuous endogenous variables.

ERRSTD
outputs estimates of �j , the standard deviation of the error term.

EXPECTED
outputs estimates of expected values of continuous endogenous variables.

MARGINAL
outputs marginal effects.

MILLS
outputs estimates of inverse Mills ratios of censored or truncated continuous, binary discrete, and
selection endogenous variables.

PREDICTED
outputs estimates of predicted endogenous variables.

PROB
outputs estimates of probability of discrete endogenous variables taking the current observed responses.

PROBALL
outputs estimates of probability of discrete endogenous variables for all possible responses.

RESIDUAL
outputs estimates of residuals of continuous endogenous variables.

XBETA
outputs estimates of x0ˇ.

TE1
outputs estimates of technical efficiency for each producer in the stochastic frontier model that is
suggested by Battese and Coelli (1988).

TE2
outputs estimates of technical efficiency for each producer in the stochastic frontier model that is
suggested by Jondrow et al. (1982).
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PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options to control the multithreaded and distributed
computing environment and requests detailed performance results of the HPQLIM procedure. You can also
use the PERFORMANCE statement to control whether the HPQLIM procedure executes in single-machine
or distributed mode. You can specify the following performance-options:

DETAILS
requests a table that shows a timing breakdown of the procedure steps.

NODES=n
specifies the number of nodes in the distributed computing environment, provided that the data are not
processed alongside the database.

NTHREADS=n
specifies the number of threads for analytic computations and overrides the SAS system option
THREADS | NOTHREADS. If you do not specify the NTHREADS= option, PROC HPQLIM creates
one thread per CPU for the analytic computations.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 36 in Chapter 3, “Shared Concepts and Topics.”

PRIOR Statement
PRIOR _REGRESSORS | parameter-list � distribution ;

The PRIOR statement specifies the prior distribution of the model parameters. You must specify one
parameter or a list of parameters, a tilde �, and then a distribution with its parameters. Multiple PRIOR
statements are allowed.

You can specify the following distributions:

NORMAL(MEAN=�, VAR=�2)
specifies a normal distribution with the parameters MEAN and VAR.

GAMMA(SHAPE=a, SCALE=b)
specifies a gamma distribution with the parameters SHAPE and SCALE.

IGAMMA(SHAPE=a, SCALE=b)
specifies an inverse gamma distribution with the parameters SHAPE and SCALE.

UNIFORM(MIN=m, MAX=M)
specifies a uniform distribution that is defined between MIN and MAX.

BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)
specifies a beta distribution with the parameters SHAPE1 and SHAPE2 and defined between MIN and
MAX.
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T(LOCATION=�, DF=�)
specifies a noncentral t distribution with DF degrees of freedom and a location parameter equal to
LOCATION.

For more information about how to specify distributions, see the section “Standard Distributions” on page 214.

You can specify the special keyword REGRESSORS to select all the parameters that are used in the linear
regression component of the model.

RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements, but the number of restrictions that are imposed is limited by the number
of regressors.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

expression operator expression

The operator can be =, <, >, <= , or >=. The operator and second expression are optional.

Restriction expressions can be composed of parameter names; multiplication (�), addition (C), and substi-
tution (�) operators; and constants. Parameters that are named in restriction expressions must be among
the parameters that are estimated by the model. Parameters that are associated with a regressor variable are
referred to by the name of the corresponding regressor variable. The restriction expressions must be a linear
function of the parameters.

The following statements illustrate the use of the RESTRICT statement:

proc hpqlim data=one;
model y = x1-x10 / censored(lb=0);
restrict x1*2 <= x2 + x3;

run;

TEST Statement
<’label’:> TEST <’string’:> equation < ,equation. . . > / options ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses about
the regression parameters in the preceding MODEL statement. Each equation specifies a linear hypothesis to
be tested. All hypotheses in one TEST statement are tested jointly. Variable names in the equations must
correspond to regressors in the preceding MODEL statement, and each name represents the coefficient of the
corresponding regressor. Use the keyword INTERCEPT for a test that includes a constant.
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You can specify the following options after the slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

LM
requests the Lagrange multiplier test.

LR
requests the likelihood ratio test.

WALD
requests the Wald test.

The following statements illustrate the use of the TEST statement (note the use of the INTERCEPT keyword
in the second TEST statement):

proc hpqlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0;
test _int: test intercept = 0, x3 = 0;

run;

The first TEST statement investigates the joint hypothesis that

ˇ1 D 0

and

0:5ˇ2 C 2ˇ3 D 0

Only linear equality restrictions and tests are permitted in PROC HPQLIM. Test expressions can be composed
only of algebraic operations that involve the addition symbol (+), subtraction symbol (–), and multiplication
symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. You can label a TEST statement
in two ways: you can specify a label followed by a colon before the TEST keyword, or you can specify a
quoted string after the TEST keyword. If you specify both a label before the TEST keyword and a quoted
string after the keyword, PROC HPQLIM uses the label that precedes the colon. If no label or quoted string
is specified, PROC HPQLIM labels the test automatically.

WEIGHT Statement
WEIGHT variable < / option > ;

The WEIGHT statement specifies a variable that supplies weighting values to use for each observation in
estimating parameters. The log likelihood for each observation is multiplied by the corresponding weight
variable value.

If the weight of an observation is nonpositive, that observation is not used in the estimation.



Details: HPQLIM Procedure F 207

You can add the following option after a slash (/):

NONORMALIZE
specifies that the weights must be used as is. When this option is not specified, the weights are
normalized so that they add up to the actual sample size. Weights wi are normalized by multiplying
them by nPn

iD1wi
, where n is the sample size.

Details: HPQLIM Procedure

Ordinal Discrete Choice Modeling

Binary Probit and Logit Model

The binary choice model is

y�i D x0iˇ C �i

where the value of the latent dependent variable, y�i , is observed only as follows:

yi D 1 if y�i > 0

D 0 otherwise

The disturbance, �i , of the probit model has a standard normal distribution with the distribution function
(CDF)

ˆ.x/ D

Z x

�1

1
p
2�

exp.�t2=2/dt

The disturbance of the logit model has a standard logistic distribution with the distribution function (CDF)

ƒ.x/ D
exp.x/

1C exp.x/
D

1

1C exp.�x/

The binary discrete choice model has the following probability that the event fyi D 1g occurs:

P.yi D 1/ D F.x0iˇ/ D
�
ˆ.x0iˇ/ .probit/
ƒ.x0iˇ/ .logit/

For more information, see the section “Ordinal Discrete Choice Modeling” (Chapter 22, SAS/ETS User’s
Guide).

Ordinal Probit/Logit

When the dependent variable is observed in sequence with M categories, binary discrete choice modeling
is not appropriate for data analysis. McKelvey and Zavoina (1975) propose the ordinal (or ordered) probit
model.
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Consider the regression equation

y�i D x0iˇ C �i

where error disturbances, �i , have the distribution function F . The unobserved continuous random variable,
y�i , is identified as M categories. Suppose there are M C 1 real numbers, �0; : : : ; �M , where �0 D �1,
�1 D 0, �M D1, and �0 � �1 � � � � � �M . Define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

For more information, see the section “Ordinal Discrete Choice Modeling” (Chapter 22, SAS/ETS User’s
Guide).

Limited Dependent Variable Models

Censored Regression Models

When the dependent variable is censored, values in a certain range are all transformed to a single value. For
example, the standard Tobit model can be defined as

y�i D x0iˇ C �i

yi D

�
y�i ify�i > 0
0 ify�i � 0

where �i � i idN.0; �2/.

The Tobit model can be generalized to handle observation-by-observation censoring. The censored model on
both the lower and upper limits can be defined as

yi D

8<:
Ri if y�i � Ri
y�i if Li < y�i < Ri
Li if y�i � Li

You can see Chapter 22.7, “Censored Regression Models” (SAS/ETS User’s Guide), for more details.

Truncated Regression Models

In a truncated model, the observed sample is a subset of the population where the dependent variable falls
within a certain range. For example, when neither a dependent variable nor exogenous variables are observed
for y�i � 0, the truncated regression model can be specified as

` D
X

i2fyi>0g

�
� lnˆ.x0iˇ=�/C ln

�
�..yi � x0iˇ/=�/

�

��

For more information, see the section “Truncated Regression Models” (Chapter 22, SAS/ETS User’s Guide).
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Stochastic Frontier Production and Cost Models
Stochastic frontier production models were first developed by Aigner, Lovell, and Schmidt (1977); Meeusen
and van den Broeck (1977). Specification of these models allow for random shocks of the production or
cost but also include a term for technical or cost inefficiency. Assuming that the production function takes a
log-linear Cobb-Douglas form, the stochastic frontier production model can be written as

ln.yi / D ˇ0 C
X
n

ˇn ln.xni /C �i

where �i D vi � ui . The vi term represents the stochastic error component, and the ui term represents the
nonnegative, technical inefficiency error component. The vi error component is assumed to be distributed iid
normal and independent from ui . If ui > 0, the error term �i is negatively skewed and represents technical
inefficiency. If ui < 0, the error term �i is positively skewed and represents cost inefficiency. PROC
HPQLIM models the ui error component as a half-normal, exponential, or truncated normal distribution.

The Normal-Half-Normal Model

When vi is iid N.0; �2v / in a normal-half-normal model, ui is iid NC.0; �2u/, with vi and ui independent of
each other. Given the independence of error terms, the joint density of v and u can be written as

f .u; v/ D
2

2��u�v
exp

�
�
u2

2�2u
�
v2

2�2v

�
Substituting v D � C u into the preceding equation and integrating u out gives

f .�/ D
2

�
�
� �
�

�
ˆ

�
�
��

�

�
where � D �u=�v and � D

p
�2u C �

2
v .

In the case of a stochastic frontier cost model, v D � � u and

f .�/ D
2

�
�
� �
�

�
ˆ

�
��

�

�
For more information, see the section “Stochastic Frontier Production and Cost Models” (Chapter 22,
SAS/ETS User’s Guide).

The Normal-Exponential Model

Under the normal-exponential model, vi is iid N.0; �2v / and ui is iid exponential. Given the independence of
error term components ui and vi , the joint density of v and u can be written as

f .u; v/ D
1

p
2��u�v

exp
�
�
u

�u
�
v2

2�2v

�
The marginal density function of � for the production function is

f .�/ D

�
1

�u

�
ˆ

�
�
�

�v
�
�v

�u

�
exp

�
�

�u
C

�2v
2�2u

�
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The marginal density function for the cost function is equal to

f .�/ D

�
1

�u

�
ˆ

�
�

�v
�
�v

�u

�
exp

�
�
�

�u
C

�2v
2�2u

�

For more information, see the section “Stochastic Frontier Production and Cost Models” (Chapter 22,
SAS/ETS User’s Guide).

The Normal–Truncated Normal Model

The normal–truncated normal model is a generalization of the normal-half-normal model that allows the
mean of ui to differ from zero. Under the normal–truncated normal model, the error term component vi is
iid NC.0; �2v / and ui is iid N.�; �2u/. The joint density of vi and ui can be written as

f .u; v/ D
1

p
2��u�vˆ.�=�u/

exp
�
�
.u � �/2

2�2u
�
v2

2�2v

�

The marginal density function of � for the production function is

f .�/ D
1

�
�

�
� C �

�

�
ˆ

�
�

��
�
��

�

��
ˆ

�
�

�u

���1
The marginal density function for the cost function is

f .�/ D
1

�
�
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�

�
ˆ

�
�

��
C
��

�

��
ˆ

�
�

�u

���1

For more information, see the section “Stochastic Frontier Production and Cost Models” (Chapter 22,
SAS/ETS User’s Guide).

For more information about normal-half-normal, normal-exponential, and normal–truncated normal models,
see Kumbhakar and Lovell (2000); Coelli, Prasada Rao, and Battese (1998).

Heteroscedasticity
If the variance of regression disturbance, (�i ), is heteroscedastic, the variance can be specified as a function
of variables

E.�2i / D �
2
i D f .z

0
i/

Table 8.2 shows various functional forms of heteroscedasticity and the corresponding options to request each
model.
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Table 8.2 Specification Summary for Modeling Heteroscedasticity

Number Model Options

1 f .z0i/ D �
2.1C exp.z0i// LINK=EXP (default)

2 f .z0i/ D �
2 exp.z0i/ LINK=EXP NOCONST

3 f .z0i/ D �
2.1C

PL
lD1 lzli / LINK=LINEAR

4 f .z0i/ D �
2.1C .

PL
lD1 lzli /

2/ LINK=LINEAR SQUARE
5 f .z0i/ D �

2.
PL
lD1 lzli / LINK=LINEAR NOCONST

6 f .z0i/ D �
2..
PL
lD1 lzli /

2/ LINK=LINEAR SQUARE NOCONST

In models 3 and 5, variances of some observations might be negative. Although the HPQLIM procedure
assigns a large penalty to move the optimization away from such a region, the optimization might not be able
to improve the objective function value and might become locked in the region. Signs of such an outcome
include extremely small likelihood values or missing standard errors in the estimates. In models 2 and 6,
variances are guaranteed to be greater than or equal to zero, but variances of some observations might be very
close to 0. In these scenarios, standard errors might be missing. Models 1 and 4 do not have such problems.
Variances in these models are always positive and never close to 0.

For more information, see the section “Heteroscedasticity and Box-Cox Transformation” (Chapter 22,
SAS/ETS User’s Guide).

Tests on Parameters
In general, the tested hypothesis can be written as

H0 W h.�/ D 0

where h.�/ is an r � 1 vector-valued function of the parameters � given by the r expressions that are specified
in the TEST statement.

Let OV be the estimate of the covariance matrix of O� . Let O� be the unconstrained estimate of � and Q� be the
constrained estimate of � such that h. Q�/ D 0. Let

A.�/ D @h.�/=@� j O�

Using this notation, the test statistics for the three types of tests are computed as follows.

• The Wald test statistic is defined as

W D h
0

. O�/
8:A. O�/ OV A0. O�/9;�1h. O�/

• The Lagrange multiplier test statistic is

LM D �
0

A. Q�/ QV A
0

. Q�/�

where � is the vector of Lagrange multipliers from the computation of the restricted estimate Q� .
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• The likelihood ratio test statistic is

LR D 2
�
L. O�/ � L. Q�/

�
where Q� represents the constrained estimate of � and L is the concentrated log-likelihood value.

The following statements use the TEST statement to perform a likelihood ratio test:

proc hpqlim;
model y = x1 x2 x3;
test x1 = 0, x2 * .5 + 2 * x3 = 0 /lr;

run;

For more information, see the section “Tests on Parameters” (Chapter 22, SAS/ETS User’s Guide).

Bayesian Analysis
To perform Bayesian analysis, you must specify a BAYES statement. Unless otherwise stated, all options
that are described in this section are options in the BAYES statement.

By default, PROC HPQLIM uses the random walk Metropolis algorithm to obtain posterior samples. For
the implementation details of the Metropolis algorithm in PROC HPQLIM, such as the blocking of the
parameters and tuning of the covariance matrices, see the sections “Blocking of Parameters” on page 212 and
“Tuning the Proposal Distribution” on page 212.

The Bayes theorem states that

p.� jy/ / �.�/L.yj�/

where � is a parameter or a vector of parameters and �.�/ is the product of the prior densities that are
specified in the PRIOR statement. The term L.yj�/ is the likelihood that is associated with the MODEL
statement.

Blocking of Parameters

In a multivariate parameter model, all the parameters are updated in one single block (by default or when you
specify the SAMPLING=MULTIMETROPOLIS option). This can be inefficient, especially when parameters
have vastly different scales. As an alternative, you can update the parameters one at a time (by specifying
SAMPLING=UNIMETROPOLIS).

Tuning the Proposal Distribution

One key factor in achieving high efficiency of a Metropolis-based Markov chain is finding a good proposal
distribution for each block of parameters. This process is called tuning. The tuning phase consists of a
number of loops that are controlled by the options MINTUNE and MAXTUNE. The MINTUNE= option
controls the minimum number of tuning loops and has a default value of 2. The MAXTUNE= option controls
the maximum number of tuning loops and has a default value of 24. Each loop repeats the number of times
specified by the NTU= option, which has a default of 500. At the end of every loop, PROC HPQLIM
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examines the acceptance probability for each block. The acceptance probability is the percentage of NTU
proposed values that have been accepted. If this probability does not fall within the acceptance tolerance
range (see the following section), the proposal distribution is modified before the next tuning loop.

A good proposal distribution should resemble the actual posterior distribution of the parameters. Large sample
theory states that the posterior distribution of the parameters approaches a multivariate normal distribution
(Gelman et al. 2004, Appendix B; Schervish 1995, Section 7.4). That is why a normal proposal distribution
often works well in practice. The default proposal distribution in PROC HPQLIM is the normal distribution.

You can see Chapter 22.7, “Bayesian Analysis” (SAS/ETS User’s Guide), for more details.

Initial Values of the Markov Chains

You can assign initial values to any parameters. For more information, see the INIT statement. If you use
the optimization PROPCOV= option, PROC HPQLIM starts the tuning at the optimized values. This option
overwrites the provided initial values.

Prior Distributions
The PRIOR statement specifies the prior distribution of the model parameters. You must specify one
parameter or a list of parameters, a tilde �, and then a distribution with its parameters. You can specify
multiple PRIOR statements to define independent priors. Parameters that are associated with a regressor
variable are referred to by the name of the corresponding regressor variable.

You can specify the special keyword _REGRESSORS to consider all the regressors of a model. If multiple
PRIOR statements affect the same parameter, the last PRIOR statement prevails. For example, in a regression
with two regressors (X1, X2), the following statements imply that the prior on X1 is NORMAL(MEAN=0,
VAR=1), the prior on X2 is GAMMA(SHAPE=3, SCALE=4).

...
prior _Regressors ~ uniform(min=0, max=1);
prior X1 X2 ~ gamma(shape=3, scale=4);
prior X1 ~ normal(mean=0, var=1);
...

If a parameter is not associated with a PRIOR statement or if some of the prior hyperparameters are missing,
then the default choices in Table Table 8.3 are considered.

Table 8.3 Default Values for Prior Distributions

PRIOR Distribution Hyperparameter1 Hyperparameter2 Min Max Parameters Default Choice

NORMAL MEAN=0 VAR=1E6 �1 1 Regression-Location-Threshold
IGAMMA SHAPE=2.000001 SCALE=1 > 0 1 Scale
GAMMA SHAPE=1 SCALE=1 0 1

UNIFORM �1 1

BETA SHAPE1=1 SHAPE2=1 �1 1

T LOCATION=0 DF=3 �1 1

For density specification, see the section “Standard Distributions” on page 214.
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Standard Distributions

Table 8.4 through Table 8.9 show all the distribution density functions that PROC HPQLIM recognizes. You
specify these distribution densities in the PRIOR statement.

Table 8.4 Beta Distribution

PRIOR statement BETA(SHAPE1=a, SHAPE2=b, MIN=m, MAX=M)

Note: Commonly m D 0 and M D 1.

Density .��m/a�1.M��/b�1

B.a;b/.M�m/aCb�1

Parameter restriction a > 0, b > 0, �1 < m < M <1

Range

8̂̂̂̂
<̂̂
ˆ̂̂̂:
Œm;M� when a D 1; b D 1

Œm;M/ when a D 1; b ¤ 1

.m;M� when a ¤ 1; b D 1

.m;M/ otherwise

Mean a
aCb
� .M �m/Cm

Variance ab
.aCb/2.aCbC1/

� .M �m/2

Mode

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a�1
aCb�2

�M C b�1
aCb�2

�m a > 1; b > 1

m and M a < 1; b < 1

m

(
a < 1; b � 1

a D 1; b > 1

M

(
a � 1; b < 1

a > 1; b D 1

not unique a D b D 1

Defaults SHAPE1=SHAPE2=1, MIN! �1, MAX!1

Table 8.5 Gamma Distribution

PRIOR statement GAMMA(SHAPE=a, SCALE=b)

Density 1
ba�.a/

�a�1e��=b

Parameter restriction a > 0; b > 0

Range Œ0;1/

Mean ab

Variance ab2

Mode .a � 1/b

Defaults SHAPE=SCALE=1
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Table 8.6 Inverse Gamma Distribution

PRIOR statement IGAMMA(SHAPE=a, SCALE=b)

Density ba

�.a/
��.aC1/e�b=�

Parameter restriction a > 0; b > 0

Range 0 < � <1

Mean b
a�1

; a > 1

Variance b2

.a�1/2.a�2/
; a > 2

Mode b
aC1

Defaults SHAPE=2.000001, SCALE=1

Table 8.7 Normal Distribution

PRIOR statement NORMAL(MEAN=�, VAR=�2)

Density 1

�
p
2�

exp
�
�
.���/2

2�2

�
Parameter restriction �2 > 0

Range �1 < � <1

Mean �

Variance �2

Mode �

Defaults MEAN=0, VAR=1000000

Table 8.8 t Distribution

PRIOR statement T(LOCATION=�, DF=�)

Density
�
�
�C1
2

�
�.�2 /

p
��

h
1C .���/2

�

i��C1
2

Parameter restriction � > 0

Range �1 < � <1

Mean �; for � > 1

Variance �
��2

; for � > 2

Mode �

Defaults LOCATION=0, DF=3
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Table 8.9 Uniform Distribution

PRIOR statement UNIFORM(MIN=m, MAX=M)

Density 1
M�m

Parameter restriction �1 < m < M <1

Range � 2 Œm;M�

Mean mCM
2

Variance .M�m/2

12

Mode Not unique

Defaults MIN! �1, MAX!1

Output to SAS Data Set

XBeta, Predicted, and Residual

Xbeta is the structural part on the right-hand side of the model. The predicted value is the predicted dependent
variable value. For censored variables, if the predicted value is outside the boundaries, it is reported as the
closest boundary. The residual is defined only for continuous variables and is defined as

Residual D Observed � Predicted

Error Standard Deviation

The error standard deviation is �i in the model. It varies only when the HETERO statement is used.

Marginal Effects

A marginal effect is defined as a contribution of one control variable to the response variable. For a binary
choice model with two response categories, �0 D �1 and �1 D 0, �2 D 1. For an ordinal response
model with M response categories (�0; � � � ; �M ), define

Ri;j D �j � x0iˇ

The probability that the unobserved dependent variable is contained in the jth category can be written as

P Œ�j�1 < y
�
i � �j � D F.Ri;j / � F.Ri;j�1/

The marginal effect of changes in the regressors on the probability of yi D j is then

@ProbŒyi D j �
@x

D Œf .�j�1 � x0iˇ/ � f .�j � x0iˇ/�ˇ

where f .x/ D dF .x/
dx

. In particular,

f .x/ D
dF.x/

dx
D

(
1p
2�
e�x

2=2 .probit/
e�x

Œ1Ce.�x/�2
.logit/
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The marginal effects in the truncated regression model are

@EŒyi jLi < y
�
i < Ri �

@x
D ˇ

�
1 �

.�.ai / � �.bi //
2

.ˆ.bi / �ˆ.ai //2
C
ai�.ai / � bi�.bi /

ˆ.bi / �ˆ.ai /

�
where ai D

Li�x0
i
ˇ

�i
and bi D

Ri�x0
i
ˇ

�i
.

The marginal effects in the censored regression model are

@EŒyjxi �
@x

D ˇ � ProbŒLi < y�i < Ri �

Expected and Conditionally Expected Values

The expected value is the unconditional expectation of the dependent variable. For a censored variable, it is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.ˆ.bi / �ˆ.ai //C .1 �ˆ.bi //Ri

For a left-censored variable (Ri D1), this formula is

EŒyi � D ˆ.ai /Li C .x0iˇ C ��i /.1 �ˆ.ai //

where � D �.ai /
1�ˆ.ai /

.

For a right-censored variable (Li D �1), this formula is

EŒyi � D .x0iˇ C ��i /ˆ.bi /C .1 �ˆ.bi //Ri

where � D � �.bi /
ˆ.bi /

.

For a noncensored variable, this formula is

EŒyi � D x0iˇ

The conditional expected value is the expectation when the variable is inside the boundaries:

EŒyi jLi < yi < Ri � D x0iˇ C ��i

Technical Efficiency

Technical efficiency for each producer is computed only for stochastic frontier models.

In general, the stochastic production frontier can be written as

yi D f .xi Iˇ/ expfvigTEi

where yi denotes producer i’s actual output, f .�/ is the deterministic part of the production frontier, expfvig
is a producer-specific error term, and TEi is the technical efficiency coefficient, which can be written as

TEi D
yi

f .xi Iˇ/ expfvig
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For a Cobb-Douglas production function, TEi D expf�uig. For more information, see the section “Stochas-
tic Frontier Production and Cost Models” on page 209.

The cost frontier can be written in general as

Ei D c.yi ; wi Iˇ/ expfvig=CEi

where wi denotes producer i’s input prices, c.�/ is the deterministic part of the cost frontier, expfvig is a
producer-specific error term, and CEi is the cost efficiency coefficient, which can be written as

CEi D
c.xi ; wi Iˇ/ expfvig

Ei

For a Cobb-Douglas cost function, CEi D expf�uig. For more information, see the section “Stochastic
Frontier Production and Cost Models” on page 209. Hence, both technical and cost efficiency coefficients are
the same. The estimates of technical efficiency are provided in the following subsections.

Normal-Half-Normal Model

Define �� D ���2u=�
2 and �2� D �

2
u�

2
v =�

2. Then, as shown by Jondrow et al. (1982), conditional density
is as follows:

f .uj�/ D
f .u; �/

f .�/
D

1
p
2���

exp
�
�
.u � ��/

2

2�2�

���
1 �ˆ

�
�
��

��

��
Hence, f .uj�/ is the density for NC.��; �2�/.

From this result, it follows that the estimate of technical efficiency (Battese and Coelli 1988) is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�� � ��i=��/

1 �ˆ.���i=��/

�
exp

�
���i C

1

2
�2�

�
The second version of the estimate (Jondrow et al. 1982) is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D ��i C ��

�
�.���i=��/

1 �ˆ.���i=��/

�
D ��

�
�.�i�=�/

1 �ˆ.�i�=�/
�

�
�i�

�

��

Normal-Exponential Model

Define A D � Q�=�v and Q� D �� � �2v =�u. Then, as shown by Kumbhakar and Lovell (2000), conditional
density is as follows:

f .uj�/ D
1

p
2��vˆ.� Q�=�v/

exp
�
�
.u � Q�/2

2�2

�
Hence, f .uj�/ is the density for NC. Q�; �2v /.

From this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
�
1 �ˆ.�v � Q�i=�v/

1 �ˆ.� Q�i=�v/

�
exp

�
� Q�i C

1

2
�2v

�
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The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C �v

�
�.� Q�i=�v/

1 �ˆ.� Q�i=�v/

�
D �v

�
�.A/

ˆ.�A/
� A

�
Normal–Truncated Normal Model

Define Q� D .��2u�i C ��
2
v /=�

2 and �2� D �2u�
2
v =�

2. Then, as shown by Kumbhakar and Lovell (2000),
conditional density is as follows:

f .uj�/ D
1

p
2���Œ1 �ˆ.� Q�=��/�

exp
�
�
.u � Q�/2

2�2�

�
Hence, f .uj�/ is the density for NC. Q�; �2�/.

From this result, it follows that the estimate of technical efficiency is

TE1i D E.expf�uigj�i / D
1 �ˆ.�� � Q�i=��/

1 �ˆ.� Q�i=��/
exp

�
� Q�i C

1

2
�2�

�
The second version of the estimate is

TE2i D expf�E.ui j�i /g

where

E.ui j�i / D Q�i C ��

�
�. Q�i=��/

1 �ˆ.� Q�i=��/

�

OUTEST= Data Set
The OUTEST= data set contains all the parameters that are estimated by a MODEL statement. Each parameter
contains the estimate for the corresponding parameter in the corresponding model. In addition, the OUTEST=
data set contains the following variables:

_NAME_ indicates the name of the independent variable.

_TYPE_ indicates the type of observation. PARM indicates the row of coefficients; STD indicates
the row of standard deviations of the corresponding coefficients.

_STATUS_ indicates the convergence status for optimization.

The rest of the columns correspond to the explanatory variables.

The OUTEST= data set contains one observation for the MODEL statement, which shows the parameter
estimates for that model. If you specify the COVOUT option in the PROC HPQLIM statement, the OUTEST=
data set includes additional observations for the MODEL statement, which show the rows of the covariance
matrix of parameter estimates. For covariance observations, the value of the _TYPE_ variable is COV, and
the _NAME_ variable identifies the parameter that is associated with that row of the covariance matrix. If you
specify the CORROUT option in the PROC HPQLIM statement, the OUTEST= data set includes additional
observations for the MODEL statement, which show the rows of the correlation matrix of parameter estimates.
For correlation observations, the value of the _TYPE_ variable is CORR, and the _NAME_ variable identifies
the parameter that is associated with that row of the correlation matrix.
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Naming

Naming of Parameters

The parameters are named in the same way as in other SAS procedures such as the REG and PROBIT
procedures. The constant in the regression equation is called Intercept. The coefficients of independent
variables are named by the independent variables. The standard deviation of the errors is called _Sigma. If
the HETERO statement is included, the coefficients of the independent variables in the HETERO statement
are called _H.x, where x is the name of the independent variable.

Naming of Output Variables

Table 8.10 shows the options in the OUTPUT statement, with the corresponding variable names and their
explanations.

Table 8.10 OUTPUT Statement Options

output-option Variable Name Explanation

CONDITIONAL CEXPCT_y Conditional expected value of y, condi-
tioned on the truncation

ERRSTD ERRSTD_y Standard deviation of error term
EXPECTED EXPCT_y Unconditional expected value of y
MARGINAL MEFF_x Marginal effect of x on y (@y

@x
) with single

equation
PREDICTED P_y Predicted value of y
RESIDUAL RESID_y Residual of y, (y – PredictedY)
PROB PROB_y Probability that y is taking the observed

value in this observation (discrete y only)
PROBALL PROBi_y Probability that y is taking the ith value

(discrete y only)
MILLS MILLS_y Inverse Mills ratio for y
TE1 TE1 Technical efficiency estimate for each pro-

ducer proposed by Battese and Coelli
(1988)

TE2 TE2 Technical efficiency estimate for each pro-
ducer proposed by Jondrow et al. (1982)

XBETA XBETA_y Structure part (x0ˇ) of y equation

If you prefer to name the output variables differently, you can use the RENAME option in the data set. For
example, the following statements rename the residual of y as Resid:

proc hpqlim data=one;
model y = x1-x10 / censored;
output out=outds(rename=(resid_y=resid)) residual;

run;
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ODS Table Names
PROC HPQLIM assigns a name to each table that it creates. You can use these names to refer to the table
when you use the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 8.11.

Table 8.11 ODS Tables Produced in PROC HPQLIM

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement and TEST Statement
ResponseProfile Response profile Default
FitSummary Summary of nonlinear estimation Default
ParameterEstimates Parameter estimates Default
SummaryContResponse Summary of continuous response Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB

ODS Tables Created by the BAYES Statement
AutoCorr Autocorrelation statistics for each parameter Default
Corr Correlation matrix of the posterior samples STATS=COR
Cov Covariance matrix of the posterior samples STATS=COV
ESS Effective sample size for each parameter Default
MCSE Monte Carlo standard error for each parameter Default
Geweke Geweke diagnostics for each parameter Default
Heidelberger Heidelberger-Welch diagnostics for each parame-

ter
DIAGNOSTICS=HEIDEL

PostIntervals Equal-tail and HPD intervals for each parameter Default
PosteriorSample Posterior samples (ODS output data

set only)
PostSummaries Posterior summaries Default
PriorSummaries Prior summaries STATS=PRIOR
Raftery Raftery-Lewis diagnostics for each parameter DIAGNOSTICS=RAFTERY

ODS Tables Created by the TEST Statement
TestResults Test results Default

ODS Graphics
You can use a name to reference every graph that is produced through ODS Graphics. The names of the
graphs that PROC HPQLIM generates are listed in Table 8.12.
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Table 8.12 Graphs Produced by PROC HPQLIM When a
BAYES Statement Is Included

ODS Graph Name Plot Description Statement and Option

Bayesian Diagnostic Plots
ADPanel Autocorrelation function and density panel PLOTS=(AUTOCORR

DENSITY)
AutocorrPanel Autocorrelation function panel PLOTS=AUTOCORR
AutocorrPlot Autocorrelation function plot PLOTS(UNPACK)=AUTOCORR
DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TAPanel Trace and autocorrelation function panel PLOTS=(TRACE AUTOCORR)
TADPanel Trace, density, and autocorrelation function panel PLOTS=(TRACE AUTOCORR

DENSITY)
TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE

Examples: The HPQLIM Procedure

Example 8.1: High-Performance Model with Censoring
This example shows the use of the HPQLIM procedure with an emphasis on processing a large data set
and on the performance improvements that are achieved by executing in the high-performance distributed
environment.

The following DATA step generates 5 million replicates from a censored model. The model contains seven
variables.

data simulate;
call streaminit(12345);
array vars x1-x7;
array parms{7} (3 4 2 4 -3 -5 -3);

intercept=2;

do i=1 to 5000000;
sum_xb=0;
do j=1 to 7;

vars[j]=rand('NORMAL',0,1);
sum_xb=sum_xb+parms[j]*vars[j];

end;
y=intercept+sum_xb+400*rand('NORMAL',0,1);
if y>400 then y=400;
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if y<0 then y=0;
output;

end;
keep y x1-x7;
run;

The following statements estimate a censored model. The model is executed in the distributed computing
environment with two threads and only one node. These settings are used to obtain a hypothetical environment
that might resemble running the HPQLIM procedure on a desktop workstation with a dual-core CPU. To run
these statements successfully, you need to set the macro variables GRIDHOST and GRIDINSTALLLOC to
resolve to appropriate values, or you can replace the references to the macro variables in the example with
the appropriate values.

option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

proc hpqlim data=simulate ;
performance nthreads=2 nodes=1 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
model y=x1-x7 /censored(lb=0 ub=400);

run;

Output 8.1.1 shows that the censored model was estimated on the grid, defined in a macro variable named
GRIDHOST, in a distributed environment on only one node with two threads.

Output 8.1.1 Censored Model with One Node and Two Threads: Performance Table

Estimating a Tobit modelEstimating a Tobit model

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 1

Number of Threads per Node 2

Output 8.1.2 shows the estimation results for the censored model. The “Model Fit Summary” table shows
detailed information about the model and indicates that all 5 million observations were used to fit the model.
All parameter estimates in the “Parameter Estimates” table are highly significant and correspond to their
theoretical values that were set during the data generating process. The optimization of the model with 5
million observations took 43 seconds.

Output 8.1.2 Censored Model with One Node and Two Threads: Summary

Model Information

Data Source SIMULATE

Response Variable y

Optimization Technique Quasi-Newton
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Output 8.1.2 continued

Number of Observations

Number of Observations Read 5000000

Number of Observations Used 5000000

Summary Statistics of Continuous Responses

Variable Mean
Standard

Error Type
Lower
Bound

Upper
Bound

N Obs
Lower
Bound

N Obs
Upper
Bound

y 127.0 159.491090 Censored 0 400.0 249E4 8E5

Convergence criterion (FCONV=2.220446E-16) satisfied.

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable y

Number of Observations 5000000

Log Likelihood -15268972

Maximum Absolute Gradient 0.0003291

Number of Iterations 11

Optimization Method Quasi-Newton

AIC 30537962

Schwarz Criterion 30538083

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 2.220379 0.222201 9.99 <.0001

x1 1 3.055533 0.201620 15.15 <.0001

x2 1 4.000176 0.201570 19.85 <.0001

x3 1 1.852740 0.201555 9.19 <.0001

x4 1 4.170266 0.201533 20.69 <.0001

x5 1 -3.010679 0.201458 -14.94 <.0001

x6 1 -5.176016 0.201541 -25.68 <.0001

x7 1 -2.695948 0.201671 -13.37 <.0001

_Sigma 1 399.997845 0.261930 1527.12 <.0001

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 1.62 2.65%

Communication to Client 0.06 0.10%

Optimization 59.44 97.25%

Post-optimization 0.00 0.00%
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In the following statements, the PERFORMANCE statement is modified to use a grid with 10 nodes, with
each node capable of spawning eight threads:

proc hpqlim data=simulate ;
performance nthreads=8 nodes=10 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
model y=x1-x7 /censored(lb=0 ub=400);

run;

The second model which was run on a grid with 10 nodes and eight threads each (Output 8.1.3) took only
1.15 seconds instead of 59 seconds to optimize.

Output 8.1.3 Censored Model on Ten Nodes with Eight Threads Each: Performance Table

Estimating a Tobit modelEstimating a Tobit model

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 10

Number of Threads per Node 8

Because the two models being estimated are identical, it is reasonable to expect that Output 8.1.2 and
Output 8.1.4 would show the same results except for the performance. However, in certain circumstances,
you might observe slight numerical differences in the results (depending on the number of nodes and
threads) because the order in which partial results are accumulated, the limits of numerical precision, and the
propagation of error in numerical computations can make a difference in the final result.

Output 8.1.4 Censored Model on Ten Nodes with Eight Threads Each: Summary

Model Information

Data Source SIMULATE

Response Variable y

Optimization Technique Quasi-Newton

Number of Observations

Number of Observations Read 5000000

Number of Observations Used 5000000

Summary Statistics of Continuous Responses

Variable Mean
Standard

Error Type
Lower
Bound

Upper
Bound

N Obs
Lower
Bound

N Obs
Upper
Bound

y 127.0 159.491090 Censored 0 400.0 249E4 8E5

Convergence criterion (FCONV=2.220446E-16) satisfied.
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Output 8.1.4 continued

Model Fit Summary

Number of Endogenous Variables 1

Endogenous Variable y

Number of Observations 5000000

Log Likelihood -15268972

Maximum Absolute Gradient 0.0008332

Number of Iterations 10

Optimization Method Quasi-Newton

AIC 30537962

Schwarz Criterion 30538083

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 2.220358 0.222201 9.99 <.0001

x1 1 3.055491 0.201620 15.15 <.0001

x2 1 4.000196 0.201570 19.85 <.0001

x3 1 1.852735 0.201555 9.19 <.0001

x4 1 4.170323 0.201533 20.69 <.0001

x5 1 -3.010670 0.201458 -14.94 <.0001

x6 1 -5.176019 0.201541 -25.68 <.0001

x7 1 -2.695886 0.201671 -13.37 <.0001

_Sigma 1 399.997846 0.261930 1527.12 <.0001

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 0.08 5.76%

Communication to Client 0.19 13.52%

Optimization 1.15 80.72%

Post-optimization 0.00 0.00%

As this example suggests, increasing the number of nodes and the number of threads per node improves
performance significantly. When you use the parallelism that a high-performance distributed environment
affords, you can see an even more dramatic reduction in the time required for the optimization as the number
of observations in the data set increases. When the data set is extremely large, the computations might not
even be possible with the typical memory resources and computational constraints of a desktop computer.
Under such circumstances the high-performance distributed environment becomes a necessity.

Example 8.2: Bayesian High-Performance Model with Censoring
This example shows the use of the Bayesian analysis available in the HPQLIM procedure with an emphasis
on processing a large data set and on the performance improvements that are achieved by executing in a
high-performance distributed environment.

The model and the data set are the same as in Example 8.1, and the priors are set to the defaults.
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The model is executed in the distributed computing environment with two threads and only one node. These
settings are used to obtain a hypothetical environment that might resemble running the HPQLIM procedure
on a desktop workstation with a dual-core CPU. To run the following statements successfully, you need to
set the macro variables GRIDHOST and GRIDINSTALLLOC to resolve to appropriate values, or you can
replace the references to the macro variables in the example with the appropriate values.

option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

proc hpqlim data=simulate ;
bayes nbi=10000 nmc=30000;

performance nthreads=2 nodes=1 details
host="&GRIDHOST" install="&GRIDINSTALLLOC";

model y=x1-x7 /censored(lb=0 ub=400);
%*; ods output PerformanceInfo=perfInfo;
%*; ods output Timing=time;

run;

Output 8.2.1 shows a summary of the posterior distribution that is associated with the censored model when
you use diffuse prior distributions.

Output 8.2.1 Posterior Summary for Bayesian Censored Model

Estimating a Tobit model

The HPQLIM Procedure

Estimating a Tobit model

The HPQLIM Procedure

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 30000 2.2192 0.2160 2.0730 2.2171 2.3597

x1 30000 3.0564 0.1954 2.9246 3.0571 3.1890

x2 30000 3.9980 0.1980 3.8660 3.9954 4.1295

x3 30000 1.8540 0.1952 1.7238 1.8508 1.9844

x4 30000 4.1725 0.1986 4.0399 4.1717 4.3040

x5 30000 -3.0089 0.1988 -3.1414 -3.0090 -2.8818

x6 30000 -5.1681 0.1971 -5.3011 -5.1671 -5.0341

x7 30000 -2.6998 0.1955 -2.8312 -2.7000 -2.5656

_Sigma 30000 400.0 0.2548 399.8 400.0 400.2

Output 8.2.2 show a summary of the performance when you use a distributed computing environment with
one node and two threads.
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Output 8.2.2 Performance Analysis for Bayesian Censored Model on One Node with Two Threads

Estimating a Tobit modelEstimating a Tobit model

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 1

Number of Threads per Node 2

Estimating a Tobit modelEstimating a Tobit model

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 1.59 0.00%

Communication to Client 0.06 0.00%

Bayesian Analysis: Likelihood for MCMC 38698.65 99.84%

Bayesian Analysis: MCMC 0.63 0.00%

Optimization 58.54 0.15%

Post-optimization 0.00 0.00%

Finally, Output 8.2.3 shows the diagnostic and summary plots that are associated with X1.

Output 8.2.3 Bayesian Diagnostic and Summary Plots for x1

In the following statements, the PERFORMANCE statement is modified to use a grid with 10 nodes, where
each node spawns eight threads:
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option set=GRIDHOST="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

proc hpqlim data=simulate ;
bayes nbi=10000 nmc=30000;

performance nthreads=8 nodes=10 details
host="&GRIDHOST" install="&GRIDINSTALLLOC";

model y=x1-x7 /censored(lb=0 ub=400);
%*; ods output PerformanceInfo=perfInfo;
%*; ods output Timing=time;

run;

The two models are identical, but the second implementation, which was run on a grid that used 10 nodes
with eight threads each, took only 24 minutes instead of 10.75 hours to sample from the same posterior
distribution.

Output 8.2.4 Performance Analysis for Bayesian Censored Model on Ten Nodes with Eight Threads Each

Estimating a Tobit modelEstimating a Tobit model

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 10

Number of Threads per Node 8

Estimating a Tobit modelEstimating a Tobit model

Procedure Task Timing

Task Seconds Percent

Reading and Levelizing Data 0.08 0.01%

Communication to Client 0.23 0.02%

Bayesian Analysis: Likelihood for MCMC 1432.69 99.83%

Bayesian Analysis: MCMC 0.17 0.01%

Optimization 1.90 0.13%

Post-optimization 0.00 0.00%
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Overview: HPSEVERITY Procedure
The HPSEVERITY procedure estimates parameters of any arbitrary continuous probability distribution that
is used to model the magnitude (severity) of a continuous-valued event of interest. Some examples of such
events are loss amounts paid by an insurance company and demand of a product as depicted by its sales.
PROC HPSEVERITY is especially useful when the severity of an event does not follow typical distributions
(such as the normal distribution) that are often assumed by standard statistical methods.

PROC HPSEVERITY runs in either single-machine mode or distributed mode. NOTE: Distributed mode
requires SAS High-Performance Econometrics.

PROC HPSEVERITY provides a default set of probability distribution models that includes the Burr,
exponential, gamma, generalized Pareto, inverse Gaussian (Wald), lognormal, Pareto, Tweedie, and Weibull
distributions. In the simplest form, you can estimate the parameters of any of these distributions by using a
list of severity values that are recorded in a SAS data set. You can optionally group the values by a set of BY
variables. PROC HPSEVERITY computes the estimates of the model parameters, their standard errors, and
their covariance structure by using the maximum likelihood method for each of the BY groups.

PROC HPSEVERITY can fit multiple distributions at the same time and choose the best distribution according
to a selection criterion that you specify. You can use seven different statistics of fit as selection criteria. They
are log likelihood, Akaike’s information criterion (AIC), corrected Akaike’s information criterion (AICC),
Schwarz Bayesian information criterion (BIC), Kolmogorov-Smirnov statistic (KS), Anderson-Darling
statistic (AD), and Cramér-von Mises statistic (CvM).

You can request the procedure to output the status of the estimation process, the parameter estimates and their
standard errors, the estimated covariance structure of the parameters, the statistics of fit, estimated cumulative
distribution function (CDF) for each of the specified distributions, and the empirical distribution function
(EDF) estimate (which is used to compute the KS, AD, and CvM statistics of fit).

The following key features make PROC HPSEVERITY unique among SAS procedures that can estimate
continuous probability distributions:
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• It enables you to fit a distribution model when the severity values are truncated or censored or both. You
can specify any combination of the following types of censoring and truncation effects: left-censoring,
right-censoring, left-truncation, or right-truncation. This is especially useful in applications with an
insurance-type model where a severity (loss) is reported and recorded only if it is greater than the
deductible amount (left-truncation) and where a severity value greater than or equal to the policy limit
is recorded at the limit (right-censoring). Another useful application is that of interval-censored data,
where you know both the lower limit (right-censoring) and upper limit (left-censoring) on the severity,
but you do not know the exact value.

PROC HPSEVERITY also enables you to specify a probability of observability for the left-truncated
data, which is a probability of observing values greater than the left-truncation threshold. This
additional information can be useful in certain applications to more correctly model the distribution of
the severity of events.

It uses an appropriate estimator of the empirical distribution function (EDF). EDF is required to
compute the KS, AD, and CvM statistics-of-fit. The procedure also provides the EDF estimates to
your custom parameter initialization method. When you specify truncation or censoring, the EDF is
estimated by using either Kaplan-Meier’s product-limit estimator or Turnbull’s estimator. The former is
used by default when you specify only one form of censoring effect (right-censoring or left-censoring),
whereas the latter is used by default when you specify both left-censoring and right-censoring effects.
The procedure computes the standard errors for all EDF estimators.

• It enables you to define any arbitrary continuous parametric distribution model and to estimate its
parameters. You just need to define the key components of the distribution, such as its probability
density function (PDF) and cumulative distribution function (CDF), as a set of functions and subroutines
written with the FCMP procedure, which is part of Base SAS software. As long as the functions and
subroutines follow certain rules, the HPSEVERITY procedure can fit the distribution model defined by
them.

• It can model the influence of exogenous or regressor variables on a probability distribution, as long as
the distribution has a scale parameter. A linear combination of regression effects is assumed to affect
the scale parameter via an exponential link function.

If a distribution does not have a scale parameter, then either it needs to have another parameter that can
be derived from a scale parameter by using a supported transformation or it needs to be reparameterized
to have a scale parameter. If neither of these is possible, then regression effects cannot be modeled.

You can easily construct many types of regression effects by using various operators on a set of classifi-
cation and continuous variables. You can specify classification variables in the CLASS statement.

• It enables you to specify your own objective function to be optimized for estimating the parameters of
a model. You can write SAS programming statements to specify the contribution of each observation
to the objective function. You can use keyword functions such as _PDF_ and _CDF_ to generalize
the objective function to any distribution. If you do not specify your own objective function, then the
parameters of a model are estimated by maximizing the likelihood function of the data.

• It enables you to create scoring functions that offer a convenient way to evaluate any distribution
function, such as PDF, CDF, QUANTILE, or your custom distribution function, for a fitted model on
new observations.
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Because the HPSEVERITY procedure is a high-performance analytical procedure, it also does the following:

• enables you to run in distributed mode on a cluster of machines that distribute the data and the
computations

• enables you to run in single-machine mode on the server where SAS is installed

• exploits all the available cores and concurrent threads, regardless of execution mode

For more information, see the section “Processing Modes” on page 10 in Chapter 3, “Shared Concepts and
Topics.”.

Getting Started: HPSEVERITY Procedure
This section outlines the use of the HPSEVERITY procedure to fit continuous probability distribution models.
Three examples illustrate different features of the procedure.

A Simple Example of Fitting Predefined Distributions
The simplest way to use PROC HPSEVERITY is to fit all the predefined distributions to a set of values and
let the procedure identify the best fitting distribution.

Consider a lognormal distribution, whose probability density function (PDF) f and cumulative distribution
function (CDF) F are as follows, respectively, where ˆ denotes the CDF of the standard normal distribution:
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The following DATA step statements simulate a sample from a lognormal distribution with population
parameters � D 1:5 and � D 0:25, and store the sample in the variable Y of a data set Work.Test_sev1:

/*------------- Simple Lognormal Example -------------*/
data test_sev1(keep=y label='Simple Lognormal Sample');

call streaminit(45678);
label y='Response Variable';
Mu = 1.5;
Sigma = 0.25;
do n = 1 to 100;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;
run;

The following statements fit all the predefined distribution models to the values of Y and identify the best
distribution according to the corrected Akaike’s information criterion (AICC):
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proc hpseverity data=test_sev1 crit=aicc;
loss y;
dist _predefined_;

run;

The PROC HPSEVERITY statement specifies the input data set along with the model selection criterion, the
LOSS statement specifies the variable to be modeled, and the DIST statement with the _PREDEFINED_
keyword specifies that all the predefined distribution models be fitted.

Some of the default output displayed by this step is shown in Figure 9.1 through Figure 9.3. First, information
about the input data set is displayed followed by the “Model Selection” table, as shown in Figure 9.1. The
model selection table displays the convergence status, the value of the selection criterion, and the selection
status for each of the candidate models. The Converged column indicates whether the estimation process for
a given distribution model has converged, might have converged, or failed. The Selected column indicates
whether a given distribution has the best fit for the data according to the selection criterion. For this example,
the lognormal distribution model is selected, because it has the lowest value for the selection criterion.

Figure 9.1 Data Set Information and Model Selection Table

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV1

Label Simple Lognormal Sample

Model Selection

Distribution Converged AICC Selected

Burr Yes 322.50845 No

Exp Yes 508.12287 No

Gamma Yes 320.50264 No

Igauss Yes 319.61652 No

Logn Yes 319.56579 Yes

Pareto Yes 510.28172 No

Gpd Yes 510.20576 No

Weibull Yes 334.82373 No

Next, the estimation information for each of the candidate models is displayed. The information for the
lognormal model, which is the best fitting model, is shown in Figure 9.2. The first table displays a summary
of the distribution. The second table displays the convergence status. This is followed by a summary of
the optimization process which indicates the technique used, the number of iterations, the number of times
the objective function was evaluated, and the log likelihood attained at the end of the optimization. Since
the model with lognormal distribution has converged, PROC HPSEVERITY displays its statistics of fit and
parameter estimates. The estimates of Mu=1.49605 and Sigma=0.26243 are quite close to the population
parameters of Mu=1.5 and Sigma=0.25 from which the sample was generated. The p-value for each estimate
indicates the rejection of the null hypothesis that the estimate is 0, implying that both the estimates are
significantly different from 0.
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Figure 9.2 Estimation Details for the Lognormal Model

The HPSEVERITY Procedure
Logn Distribution

The HPSEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn

Description Lognormal Distribution

Distribution Parameters 2

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 2

Function Calls 8

Log Likelihood -157.72104

Fit Statistics

-2 Log Likelihood 315.44208

AIC 319.44208

AICC 319.56579

BIC 324.65242

Kolmogorov-Smirnov 0.50641

Anderson-Darling 0.31240

Cramer-von Mises 0.04353

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1.49605 0.02651 56.43 <.0001

Sigma 0.26243 0.01874 14.00 <.0001

The parameter estimates of the Burr distribution are shown in Figure 9.3. These estimates are used in the
next example.

Figure 9.3 Parameter Estimates for the Burr Model

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 4.62348 0.46181 10.01 <.0001

Alpha 1.15706 0.47493 2.44 0.0167

Gamma 6.41227 0.99039 6.47 <.0001
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An Example with Left-Truncation and Right-Censoring
PROC HPSEVERITY enables you to specify that the response variable values are left-truncated or right-
censored. The following DATA step expands the data set of the previous example to simulate a scenario that
is typically encountered by an automobile insurance company. The values of the variable Y represent the
loss values on claims that are reported to an auto insurance company. The variable THRESHOLD records
the deductible on the insurance policy. If the actual value of Y is less than or equal to the deductible, then
it is unobservable and does not get recorded. In other words, THRESHOLD specifies the left-truncation of
Y. LIMIT records the policy limit. If the value of Y is equal to or greater than the recorded value, then the
observation is right-censored.

/*----- Lognormal Model with left-truncation and censoring -----*/
data test_sev2(keep=y threshold limit

label='A Lognormal Sample With Censoring and Truncation');
set test_sev1;
label y='Censored & Truncated Response';
if _n_ = 1 then call streaminit(45679);

/* make about 20% of the observations left-truncated */
if (rand('UNIFORM') < 0.2) then

threshold = y * (1 - rand('UNIFORM'));
else

threshold = .;
/* make about 15% of the observations right-censored */
iscens = (rand('UNIFORM') < 0.15);
if (iscens) then

limit = y;
else

limit = .;
run;

The following statements use the AICC criterion to analyze which of the four predefined distributions
(lognormal, Burr, gamma, and Weibull) has the best fit for the data:

proc hpseverity data=test_sev2 crit=aicc print=all ;
loss y / lt=threshold rc=limit;

dist logn burr gamma weibull;
performance nthreads=2;

run;

The LOSS statement specifies the left-truncation and right-censoring variables. The DIST statement specifies
the candidate distributions. The PRINT= option in the PROC HPSEVERITY statement requests that all
the displayed output be prepared. The NTHREADS option in the PERFORMANCE statement specifies
that two threads of computation be used. The option is shown here just for illustration. You should use
it only when you want to restrict the procedure to use a different number of threads than the value of the
CPUCOUNT= system option, which usually defaults to the number of physical CPU cores available on your
machine, thereby allowing the procedure to fully utilize the computational power of your machine.

Some of the key results prepared by PROC HPSEVERITY are shown in Figure 9.4 through Figure 9.7. In
addition to the estimates of the range, mean, and standard deviation of Y, the “Descriptive Statistics for y”
table shown in Figure 9.4 also indicates the number of observations that are left-truncated or right-censored.
The “Model Selection” table in Figure 9.4 shows that models with all the candidate distributions have
converged and that the Logn (lognormal) model has the best fit for the data according to the AICC criterion.
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Figure 9.4 Summary Results for the Truncated and Censored Data

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV2

Label A Lognormal Sample With Censoring and Truncation

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 2.30264

Maximum 8.34116

Mean 4.62007

Standard Deviation 1.23627

Left Truncated Observations 23

Right Censored Observations 14

Model Selection

Distribution Converged AICC Selected

Logn Yes 298.92672 Yes

Burr Yes 302.66229 No

Gamma Yes 299.45293 No

Weibull Yes 309.26779 No

PROC HPSEVERITY also prepares a table that shows all the fit statistics for all the candidate models. It is
useful to see which model would be the best fit according to each of the criteria. The “All Fit Statistics” table
prepared for this example is shown in Figure 9.5. It indicates that the lognormal model is chosen by all the
criteria.

Figure 9.5 Comparing All Statistics of Fit for the Truncated and Censored Data

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD

Logn 294.80301 * 298.80301 * 298.92672 * 304.01335 * 0.51824 * 0.34736 *

Burr 296.41229 302.41229 302.66229 310.22780 0.66984 0.36712

Gamma 295.32921 299.32921 299.45293 304.53955 0.62511 0.42921

Weibull 305.14408 309.14408 309.26779 314.35442 0.93307 1.40699

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution CvM

Logn 0.05159 *

Burr 0.05726

Gamma 0.05526

Weibull 0.17465

Note: The asterisk (*)
marks the best model

according to each
column's criterion.
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Specifying Initial Values for Parameters

All the predefined distributions have parameter initialization functions built into them. For the current example,
Figure 9.6 shows the initial values that are obtained by the predefined method for the Burr distribution. It
also shows the summary of the optimization process and the final parameter estimates.

Figure 9.6 Burr Model Summary for the Truncated and Censored Data

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Theta 4.78102 1.05367E-8 Infty

Alpha 2.00000 1.05367E-8 Infty

Gamma 2.00000 1.05367E-8 Infty

Optimization Summary

Optimization Technique Trust Region

Iterations 8

Function Calls 23

Log Likelihood -148.20614

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 4.76980 0.62492 7.63 <.0001

Alpha 1.16363 0.58859 1.98 0.0509

Gamma 5.94081 1.05004 5.66 <.0001

You can specify a different set of initial values if estimates are available from fitting the distribution to similar
data. For this example, the parameters of the Burr distribution can be initialized with the final parameter
estimates of the Burr distribution that were obtained in the first example (shown in Figure 9.3). One of the
ways in which you can specify the initial values is as follows:

/*------ Specifying initial values using INIT= option -------*/
proc hpseverity data=test_sev2 crit=aicc print=all;

loss y / lt=threshold rc=limit;

dist burr(init=(theta=4.62348 alpha=1.15706 gamma=6.41227));
performance nthreads=2;

run;

The names of the parameters that are specified in the INIT option must match the parameter names in the
definition of the distribution. The results obtained with these initial values are shown in Figure 9.7. These
results indicate that new set of initial values causes the optimizer to reach the same solution with fewer
iterations and function evaluations as compared to the default initialization.
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Figure 9.7 Burr Model Optimization Summary for the Truncated and Censored Data

The HPSEVERITY Procedure
Burr Distribution

The HPSEVERITY Procedure
Burr Distribution

Optimization Summary

Optimization Technique Trust Region

Iterations 5

Function Calls 16

Log Likelihood -148.20614

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 4.76980 0.62492 7.63 <.0001

Alpha 1.16363 0.58859 1.98 0.0509

Gamma 5.94081 1.05004 5.66 <.0001

An Example of Modeling Regression Effects
Consider a scenario in which the magnitude of the response variable might be affected by some regressor
(exogenous or independent) variables. The HPSEVERITY procedure enables you to model the effect of
such variables on the distribution of the response variable via an exponential link function. In particular, if
you have k random regressor variables denoted by xj (j D 1; : : : ; k), then the distribution of the response
variable Y is assumed to have the form

Y � exp.
kX
jD1

ˇjxj / � F.‚/

where F denotes the distribution of Y with parameters ‚ and ˇj .j D 1; : : : ; k/ denote the regression
parameters (coefficients).

For the effective distribution of Y to be a valid distribution from the same parametric family as F , it is
necessary for F to have a scale parameter. The effective distribution of Y can be written as

Y � F.�;�/

where � denotes the scale parameter and � denotes the set of nonscale parameters. The scale � is affected by
the regressors as

� D �0 � exp.
kX
jD1

ˇjxj /

where �0 denotes a base value of the scale parameter.

Given this form of the model, PROC HPSEVERITY allows a distribution to be a candidate for modeling
regression effects only if it has an untransformed or a log-transformed scale parameter.
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All the predefined distributions, except the lognormal distribution, have a direct scale parameter (that is, a
parameter that is a scale parameter without any transformation). For the lognormal distribution, the parameter
� is a log-transformed scale parameter. This can be verified by replacing � with a parameter � D e�, which
results in the following expressions for the PDF f and the CDF F in terms of � and � , respectively, where ˆ
denotes the CDF of the standard normal distribution:

f .xI �; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/�log.�/

�

�2
and F.xI �; �/ D ˆ

�
log.x/ � log.�/

�

�

With this parameterization, the PDF satisfies the f .xI �; �/ D 1
�
f .x

�
I 1; �/ condition and the CDF satisfies

the F.xI �; �/ D F.x
�
I 1; �/ condition. This makes � a scale parameter. Hence, � D log.�/ is a log-

transformed scale parameter and the lognormal distribution is eligible for modeling regression effects.

The following DATA step simulates a lognormal sample whose scale is decided by the values of the three
regressors X1, X2, and X3 as follows:

� D log.�/ D 1C 0:75 X1 � X2C 0:25 X3

/*----------- Lognormal Model with Regressors ------------*/
data test_sev3(keep=y x1-x3

label='A Lognormal Sample Affected by Regressors');
array x{*} x1-x3;
array b{4} _TEMPORARY_ (1 0.75 -1 0.25);
call streaminit(45678);
label y='Response Influenced by Regressors';
Sigma = 0.25;
do n = 1 to 100;

Mu = b(1); /* log of base value of scale */
do i = 1 to dim(x);

x(i) = rand('UNIFORM');
Mu = Mu + b(i+1) * x(i);

end;
y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;
run;

The following PROC HPSEVERITY step fits the lognormal, Burr, and gamma distribution models to this
data. The regressors are specified in the SCALEMODEL statement.

proc hpseverity data=test_sev3 crit=aicc print=all;
loss y;
scalemodel x1-x3;

dist logn burr gamma;
run;

Some of the key results prepared by PROC HPSEVERITY are shown in Figure 9.8 through Figure 9.12. The
descriptive statistics of all the variables are shown in Figure 9.8.
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Figure 9.8 Summary Results for the Regression Example

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV3

Label A Lognormal Sample Affected by Regressors

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 1.17863

Maximum 6.65269

Mean 2.99859

Standard Deviation 1.12845

Descriptive Statistics for Regressors

Variable N Minimum Maximum Mean
Standard
Deviation

x1 100 0.0005115 0.97971 0.51689 0.28206

x2 100 0.01883 0.99937 0.47345 0.28885

x3 100 0.00255 0.97558 0.48301 0.29709

The comparison of the fit statistics of all the models is shown in Figure 9.9. It indicates that the lognormal
model is the best model according to each of the likelihood-based statistics, whereas the gamma model is the
best model according to two of the three EDF-based statistics.

Figure 9.9 Comparison of Statistics of Fit for the Regression Example

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD

Logn 187.49609 * 197.49609 * 198.13439 * 210.52194 * 1.97544 17.24618

Burr 190.69154 202.69154 203.59476 218.32256 2.09334 13.93436 *

Gamma 188.91483 198.91483 199.55313 211.94069 1.94472 * 15.84787

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution CvM

Logn 1.21665

Burr 1.28529

Gamma 1.17617 *

Note: The asterisk (*)
marks the best model

according to each
column's criterion.

The distribution information and the convergence results of the lognormal model are shown in Figure 9.10.
The iteration history gives you a summary of how the optimizer is traversing the surface of the log-likelihood
function in its attempt to reach the optimum. Both the change in the log likelihood and the maximum gradient
of the objective function with respect to any of the parameters typically approach 0 if the optimizer converges.



An Example of Modeling Regression Effects F 243

Figure 9.10 Convergence Results for the Lognormal Model with Regressors

The HPSEVERITY Procedure
Logn Distribution

The HPSEVERITY Procedure
Logn Distribution

Distribution Information

Name Logn

Description Lognormal Distribution

Distribution Parameters 2

Regression Parameters 3

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Iteration History

Iter
Function

Calls
-Log

Likelihood Change
Maximum
Gradient

0 2 93.75285 6.16002

1 4 93.74805 -0.0048055 0.11031

2 6 93.74805 -1.5017E-6 0.00003376

3 10 93.74805 -1.421E-13 3.1051E-12

Optimization Summary

Optimization Technique Trust Region

Iterations 3

Function Calls 10

Log Likelihood -93.74805

The final parameter estimates of the lognormal model are shown in Figure 9.11. All the estimates are
significantly different from 0. The estimate that is reported for the parameter Mu is the base value for the
log-transformed scale parameter �. Let xi .1 � i � 3/ denote the observed value for regressor Xi. If the
lognormal distribution is chosen to model Y, then the effective value of the parameter � varies with the
observed values of regressors as

� D 1:04047C 0:65221 x1 � 0:91116 x2 C 0:16243 x3

These estimated coefficients are reasonably close to the population parameters (that is, within one or two
standard errors).

Figure 9.11 Parameter Estimates for the Lognormal Model with Regressors

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1.04047 0.07614 13.66 <.0001

Sigma 0.22177 0.01609 13.78 <.0001

x1 0.65221 0.08167 7.99 <.0001

x2 -0.91116 0.07946 -11.47 <.0001

x3 0.16243 0.07782 2.09 0.0395
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The estimates of the gamma distribution model, which is the best model according to a majority of the
EDF-based statistics, are shown in Figure 9.12. The estimate that is reported for the parameter Theta is the
base value for the scale parameter � . If the gamma distribution is chosen to model Y, then the effective value
of the scale parameter is � D 0:14293 exp.0:64562 x1 � 0:89831 x2 C 0:14901 x3/.

Figure 9.12 Parameter Estimates for the Gamma Model with Regressors

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 0.14293 0.02329 6.14 <.0001

Alpha 20.37726 2.93277 6.95 <.0001

x1 0.64562 0.08224 7.85 <.0001

x2 -0.89831 0.07962 -11.28 <.0001

x3 0.14901 0.07870 1.89 0.0613

Syntax: HPSEVERITY Procedure
The following statements are available in the HPSEVERITY procedure:

PROC HPSEVERITY options ;
BY variable-list ;
LOSS < response-variable > < / censoring-truncation-options > ;
WEIGHT weight-variable ;
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;
SCALEMODEL regression-effect-list < / scalemodel-options > ;
DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword

< (distribution-option) > > . . . > < / preprocess-options > ;
OUTSCORELIB < OUTLIB= > fcmp-library-name options ;
NLOPTIONS options ;
PERFORMANCE options ;
Programming statements ;

Functional Summary
Table 9.1 summarizes the statements and options that control the HPSEVERITY procedure.

Table 9.1 HPSEVERITY Functional Summary

Description Statement Option

Statements
Specifies BY-group processing BY
Specifies the response variable to model along
with censoring and truncation effects

LOSS

Specifies the weight variable WEIGHT
Specifies the classification variables CLASS
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Table 9.1 continued

Description Statement Option

Specifies the regression effects to model SCALEMODEL
Specifies distributions to fit DIST
Specifies the library to write scoring functions to OUTSCORELIB
Specifies optimization options NLOPTIONS
Specifies performance options PERFORMANCE
Specifies programming statements that define an
objective function

Programming statements

Input and Output Options
Specifies that the OUTEST= data set contain
covariance estimates

PROC HPSEVERITY COVOUT

Specifies the input data set PROC HPSEVERITY DATA=
Specifies the input data set for parameter estimates PROC HPSEVERITY INEST=
Specifies the input item store for parameter
initialization

PROC HPSEVERITY INSTORE=

Limits the length of effect names PROC HPSEVERITY NAMELEN=
Specifies the output data set for CDF estimates PROC HPSEVERITY OUTCDF=
Specifies the output data set for parameter
estimates

PROC HPSEVERITY OUTEST=

Specifies the output data set for model information PROC HPSEVERITY OUTMODELINFO=
Specifies the output data set for statistics of fit PROC HPSEVERITY OUTSTAT=
Specifies the output item store for context and
estimation results

PROC HPSEVERITY OUTSTORE=

Data Interpretation Options
Specifies left-censoring LOSS LEFTCENSORED=
Specifies left-truncation LOSS LEFTTRUNCATED=
Specifies the probability of observability LOSS PROBOBSERVED=
Specifies right-censoring LOSS RIGHTCENSORED=
Specifies right-truncation LOSS RIGHTTRUNCATED=

Model Estimation Options
Specifies the model selection criterion PROC HPSEVERITY CRITERION=
Specifies the method for computing mixture
distribution

SCALEMODEL DFMIXTURE=

Specifies initial values for model parameters DIST INIT=
Specifies the objective function symbol PROC HPSEVERITY OBJECTIVE=
Specifies the offset variable in the scale regression
model

SCALEMODEL OFFSET=

Specifies the denominator for computing
covariance estimates

PROC HPSEVERITY VARDEF=
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Table 9.1 continued

Description Statement Option

Empirical Distribution Function (EDF)
Estimation Options
Specifies the confidence level for reporting the
confidence interval for EDF estimates

PROC HPSEVERITY EDFALPHA=

Specifies the nonparametric method of CDF
estimation

PROC HPSEVERITY EMPIRICALCDF=

Specifies the sample to be used for computing the
EDF estimates

PROC HPSEVERITY INITSAMPLE

EMPIRICALCDF=MODIFIEDKM Options
Specifies the ˛ value for the lower bound on risk
set size

PROC HPSEVERITY ALPHA=

Specifies the c value for the lower bound on risk
set size

PROC HPSEVERITY C=

Specifies the absolute lower bound on risk set size PROC HPSEVERITY RSLB=

EMPIRICALCDF=TURNBULL Options
Specifies that the final EDF estimates be
maximum likelihood estimates

PROC HPSEVERITY ENSUREMLE

Specifies the relative convergence criterion PROC HPSEVERITY EPS=
Specifies the maximum number of iterations PROC HPSEVERITY MAXITER=
Specifies the threshold below which an EDF
estimate is deemed to be 0

PROC HPSEVERITY ZEROPROB=

Scoring Function Generation Options
Specifies that scoring functions of all models be
written to one package

OUTSCORELIB COMMONPACKAGE

Specifies the output data set for BY-group
identifiers

OUTSCORELIB OUTBYID=

Specifies the output library for scoring functions OUTSCORELIB OUTLIB=

Displayed Output and Plotting Options
Specifies that distributions be listed to the log
without estimating any models that use them

DIST LISTONLY

Limits or suppresses the display of class levels PROC HPSEVERITY NOCLPRINT
Suppresses all displayed and graphical output PROC HPSEVERITY NOPRINT
Specifies which graphical output to prepare PROC HPSEVERITY PLOTS=
Specifies which output to display PROC HPSEVERITY PRINT=
Specifies that distributions be validated without
estimating any models that use them

DIST VALIDATEONLY
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PROC HPSEVERITY Statement
PROC HPSEVERITY options ;

The PROC HPSEVERITY statement invokes the procedure. You can specify two types of options in the
PROC HPSEVERITY statement. One set of options controls input and output. The other set of options
controls the model estimation and selection process.

The following options control the input data sets used by PROC HPSEVERITY and various forms of output
generated by PROC HPSEVERITY. The options are listed in alphabetical order.

COVOUT
specifies that the OUTEST= data set contain the estimate of the covariance structure of the parameters.
This option has no effect if you do not specify the OUTEST= option. For more information about
how the covariance is reported in the OUTEST= data set, see the section “OUTEST= Data Set” on
page 341.

DATA=SAS-data-set
names the input data set. If you do not specify the DATA= option, then the most recently created SAS
data set is used.

EDFALPHA=confidence-level
specifies the confidence level in the (0,1) range that is used for computing the confidence intervals for
the EDF estimates. The lower and upper confidence limits that correspond to this level are reported in
the OUTCDF= data set, if specified, and are displayed in the plot that is created when you specify the
PLOTS=CDFPERDIST option.

If you do not specify the EDFALPHA= option, then PROC HPSEVERITY uses a default value of 0.05.

INEST=SAS-data-set
names the input data set that contains the initial values of the parameter estimates to start the opti-
mization process. The initial values that you specify in the INIT= option in the DIST statement take
precedence over any initial values that you specify in the INEST= data set. For more information about
the variables in this data set, see the section “INEST= Data Set” on page 339.

If you specify the SCALEMODEL statement, then PROC HPSEVERITY reads the INEST= data
set only if the SCALEMODEL statement contains singleton continuous effects. For more generic
regression effects, you should save the estimates by specifying the OUTSTORE= item store in a step
and then use the INSTORE= option to read those estimates. The INSTORE= option is the newer and
more flexible method of specifying initial values for distribution and regression parameters.

INITSAMPLE (initsample-option)

INITSAMPLE (initsample-option . . . initsample-option)
specifies that a sample of the input data be used for initializing the distribution parameters. If you
specify more than one initsample-option, then separate them with spaces.

When you do not specify initial values for the distribution parameters, PROC HPSEVERITY needs to
compute the empirical distribution function (EDF) estimates as part of the default method for parameter
initialization. The EDF estimation process can be expensive, especially when you specify censoring
or truncation effects for the loss variable. Furthermore, it is not amenable to parallelism due to the
sequential nature of the algorithm for truncation effects. You can use the INITSAMPLE option to
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specify that only a fraction of the input data be used in order to reduce the time taken to compute the
EDF estimates. PROC HPSEVERITY uses the uniform random sampling method to select the sample,
the size and randomness of which is controlled by the following initsample-options:

FRACTION=number
specifies the fraction, between 0 and 1, of the input data to be used for sampling.

SEED=number
specifies the seed to be used for the uniform random number generator. This option enables you
to select the same sample from the same input data across different runs of PROC HPSEVERITY,
which can be useful for replicating the results across different runs. If you do not specify the seed
value, PROC HPSEVERITY generates a seed that is based on the system clock.

SIZE=number
specifies the size of the sample. If the data are distributed across different nodes, then this size
applies to the sample that is prepared at each node. For example, let the input data set of size
100,000 observations be distributed across 10 nodes such that each node has 10,000 observations.
If you specify SIZE=1000, then each node computes a local EDF estimate by using a sample
of size 1,000 selected randomly from its 10,000 observations. If you specify both of the SIZE=
and FRACTION= options, then the value that you specify in the SIZE= option is used and the
FRACTION= option is ignored.

If you do not specify the INITSAMPLE option, then a uniform random sample of at most 10,000
observations is used for EDF estimation.

INSTORE=store-name (Experimental )
names the item store that contains the context and results of the severity model estimation process. An
item store has a binary file format that cannot be modified. You must specify an item store that you
have created in another PROC HPSEVERITY step by using the OUTSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-level
name, then PROC HPSEVERITY reads the item store from the WORK library. If you specify a
two-level name of the form libname.membername, then PROC HPSEVERITY reads the item store from
the libname library.

This option is more flexible than the INEST= option, because it can read estimates of any type of scale
regression model; the INEST= option can read only scale regression models that contain singleton
continuous effects.

For more information about how the input item store is used for parameter initialization, see the
sections “Parameter Initialization” on page 282 and “Parameter Initialization for Regression Models”
on page 285.

NAMELEN=number
specifies the length to which long regression effect names are shortened. The default and minimum
value is 20.

This option does not apply to the names of singleton continuous effects if you have not specified any
CLASS variables.
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NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you
specify number , the values of the classification variables are displayed for only those variables whose
number of levels is less than number . Specifying a number helps to reduce the size of the “Class Level
Information” table if some classification variables have a large number of levels. This option has no
effect if you do not specify the CLASS statement.

NOPRINT
turns off all displayed and graphical output. If you specify this option, then any value that you specify
for the PRINT= and PLOTS= options is ignored.

OUTCDF=SAS-data-set
names the output data set to contain estimates of the cumulative distribution function (CDF) value
at each of the observations. This data set is created only when you run PROC HPSEVERITY in
single-machine mode.

The information is output for each specified model whose parameter estimation process converges. The
data set also contains the estimates of the empirical distribution function (EDF). For more information
about the variables in this data set, see the section “OUTCDF= Data Set” on page 340.

OUTEST=SAS-data-set
names the output data set to contain estimates of the parameter values and their standard errors for
each model whose parameter estimation process converges. For more information about the variables
in this data set, see the section “OUTEST= Data Set” on page 341.

If you specify the SCALEMODEL statement such that it contains at least one effect that is not a
singleton continuous effect, then the OUTEST= data set that this option creates cannot be used as an
INEST= data set in a subsequent PROC HPSEVERITY step. In such cases, it is recommended that you
use the newer OUTSTORE= option to save the estimates and specify those estimates in a subsequent
PROC HPSEVERITY step by using the INSTORE= option.

OUTMODELINFO=SAS-data-set
names the output data set to contain the information about each candidate distribution. For more
information about the variables in this data set, see the section “OUTMODELINFO= Data Set” on
page 342.

OUTSTAT=SAS-data-set
names the output data set to contain the values of statistics of fit for each model whose parameter
estimation process converges. For more information about the variables in this data set, see the section
“OUTSTAT= Data Set” on page 343.

OUTSTORE=store-name (Experimental )
names the item store to contain the context and results of the severity model estimation process. The
resulting item store has a binary file format that cannot be modified. You can specify this item store in
a subsequent PROC HPSEVERITY step by using the INSTORE= option.

The store-name is a usual one- or two-level SAS name, as for SAS data sets. If you specify a one-
level name, then the item store resides in the WORK library and is deleted at the end of the SAS
session. Because item stores are meant to be consumed by a subsequent PROC HPSEVERITY step for
parameter initialization, typical usage specifies a two-level name of the form libname.membername.
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This option is more useful than the OUTEST= option, especially when you specify a scale regression
model that contains interaction effects or effects that have CLASS variables. You can initialize such
scale regression models in a subsequent PROC HPSEVERITY step only by specifying the item store
that this option creates as an INSTORE= item store in that step.

PLOTS < (global-plot-options) > < =plot-request-option >

PLOTS < (global-plot-options) > < =(plot-request-option . . . plot-request-option) >
specifies the desired graphical output. The graphical output is created only when you run PROC
HPSEVERITY in single-machine mode. If you specify more than one global-plot-option, then separate
them with spaces and enclose them in parentheses. If you specify more than one plot-request-option,
then separate them with spaces and enclose them in parentheses.

You can specify the following global-plot-options:

HISTOGRAM
plots the histogram of the response variable on the PDF plots.

KERNEL
plots the kernel estimate of the probability density of the response variable on the PDF plots.

ONLY
turns off the default graphical output and creates only the requested plots.

You can specify the following plot-request-options:

ALL
creates all the graphical output.

CDF
creates a plot that compares the cumulative distribution function (CDF) estimates of all the
candidate distribution models to the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge.

CDFPERDIST
creates a plot of the CDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.

NONE
creates none of the graphical output. If you specify this option, then it overrides all the other
plot-request-options. The default graphical output is also suppressed.

PDF
creates a plot that compares the probability density function (PDF) estimates of all the candidate
distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge.

PDFPERDIST
creates a plot of the PDF estimates of each candidate distribution model. A plot is not created for
models whose parameter estimation process does not converge.
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PP
creates the probability-probability plot (known as the P-P plot), which compares the CDF estimate
of each candidate distribution model to the empirical distribution function (EDF). The data that
are shown in this plot are used for computing the EDF-based statistics of fit.

QQ
creates the quantile-quantile plot (known as the Q-Q plot), which compares the empirical quantiles
to the quantiles of each candidate distribution model.

If you do not specify the PLOTS= option or if you do not specify the ONLY global-plot-option, then
the default graphical output is equivalent to specifying PLOTS(HISTOGRAM KERNEL)=(CDF PDF).

PRINT < (global-display-option) > < =display-option >

PRINT < (global-display-option) > < = (display-option . . . display-option) >
specifies the desired displayed output. If you specify more than one display-option, then separate them
with spaces and enclose them in parentheses.

You can specify the following global-display-option:

ONLY
turns off the default displayed output and displays only the requested output.

You can specify the following display-options:

ALL
displays all the output.

ALLFITSTATS
displays the comparison of all the statistics of fit for all the models in one table. The table does
not include the models whose parameter estimation process does not converge.

CONVSTATUS
displays the convergence status of the parameter estimation process.

DESCSTATS
displays the descriptive statistics for the response variable. If you specify the SCALEMODEL
statement, then this option also displays the descriptive statistics for the regression effects that do
not contain a CLASS variable.

DISTINFO
displays the information about each specified distribution. For each distribution, the information
includes the name, description, validity status, and number of distribution parameters.

ESTIMATES | PARMEST
displays the final estimates of parameters. The estimates are not displayed for models whose
parameter estimation process does not converge.

ESTIMATIONDETAILS
displays the details of the estimation process for all the models in one table.
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INITIALVALUES
displays the initial values and bounds used for estimating each model.

NLOHISTORY
displays the iteration history of the nonlinear optimization process used for estimating the
parameters.

NLOSUMMARY
displays the summary of the nonlinear optimization process used for estimating the parameters.

NONE
displays none of the output. If you specify this option, then it overrides all other display options.
The default displayed output is also suppressed.

SELECTION | SELECT
displays the model selection table.

STATISTICS | FITSTATS
displays the statistics of fit for each model. The statistics of fit are not displayed for models
whose parameter estimation process does not converge.

If you do not specify the PRINT= option or if you do not specify the ONLY global-display-option,
then the default displayed output is equivalent to specifying PRINT=(SELECTION CONVSTATUS
NLOSUMMARY STATISTICS ESTIMATES).

VARDEF=DF | N
specifies the denominator to use for computing the covariance estimates. You can specify one of the
following values:

DF
specifies that the number of nonmissing observations minus the model degrees of freedom
(number of parameters) be used.

N
specifies that the number of nonmissing observations be used.

For more information about the covariance estimation, see the section “Estimating Covariance and
Standard Errors” on page 281.

The following options control the model estimation and selection process:

CRITERION | CRITERIA | CRIT=criterion-option
specifies the model selection criterion.

If you specify two or more candidate models for estimation, then the one with the best value for the
selection criterion is chosen as the best model. If you specify the OUTSTAT= data set, then the best
model’s observation has a value of 1 for the _SELECTED_ variable.

You can specify one of the following criterion-options:
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AD
specifies the Anderson-Darling (AD) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

AIC
specifies Akaike’s information criterion (AIC) as the selection criterion. A lower value is deemed
better.

AICC
specifies the finite-sample corrected Akaike’s information criterion (AICC) as the selection
criterion. A lower value is deemed better.

BIC
specifies the Schwarz Bayesian information criterion (BIC) as the selection criterion. A lower
value is deemed better.

CUSTOM
specifies the custom objective function as the selection criterion. You can specify this only if you
also specify the OBJECTIVE= option. A lower value is deemed better.

CVM
specifies the Craḿer-von Mises (CvM) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

KS
specifies the Kolmogorov-Smirnov (KS) statistic value, which is computed by using the empirical
distribution function (EDF) estimate, as the selection criterion. A lower value is deemed better.

LOGLIKELIHOOD | LL
specifies �2 � log.L/ as the selection criterion, where L is the likelihood of the data. A lower
value is deemed better. This is the default.

For more information about these criterion-options, see the section “Statistics of Fit” on page 304.

EMPIRICALCDF | EDF=method
specifies the method to use for computing the nonparametric or empirical estimate of the cumulative
distribution function of the data. You can specify one of the following values for method :

AUTOMATIC | AUTO
specifies that the method be chosen automatically based on the data specification.

If you do not specify any censoring or truncation, then the standard empirical estimation method
(STANDARD) is chosen. If you specify both right-censoring and left-censoring, then Turnbull’s
estimation method (TURNBULL) is chosen. For all other combinations of censoring and
truncation, the Kaplan-Meier method (KAPLANMEIER) is chosen.

KAPLANMEIER | KM
specifies that the product limit estimator proposed by Kaplan and Meier (1958) be used. Specifi-
cation of this method has no effect when you specify both right-censoring and left-censoring.
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MODIFIEDKM | MKM <(options)>
specifies that the modified product limit estimator be used. Specification of this method has no
effect when you specify both right-censoring and left-censoring.

This method allows Kaplan-Meier’s product limit estimates to be more robust by ignoring the
contributions to the estimate due to small risk-set sizes. The risk set is the set of observations at
the risk of failing, where an observation is said to fail if it has not been processed yet and might
experience censoring or truncation. You can specify the minimum risk-set size that makes it
eligible to be included in the estimation either as an absolute lower bound on the size (RSLB=
option) or a relative lower bound determined by the formula cn˛ proposed by Lai and Ying
(1991). You can specify the values of c and ˛ by using the C= and ALPHA= options, respectively.
By default, the relative lower bound is used with values of c = 1 and ˛ = 0.5. However, you can
modify the default by using the following options:

ALPHA | A=number
specifies the value to use for ˛ when the lower bound on the risk set size is defined as cn˛.
This value must satisfy 0 < ˛ < 1.

C=number
specifies the value to use for c when the lower bound on the risk set size is defined as cn˛.
This value must satisfy c > 0.

RSLB=number
specifies the absolute lower bound on the risk set size to be included in the estimate.

NOTURNBULL
specifies that the method be chosen automatically based on the data specification and that
Turnbull’s method not be used. This option is the default.

This method first replaces each left-censored or interval-censored observation with an uncensored
observation. If the resulting set of observations has any truncated or right-censored observations,
then the Kaplan-Meier method (KAPLANMEIER) is chosen. Otherwise, the standard empirical
estimation method (STANDARD) is chosen. The observations are modified only for the purpose
of computing the EDF estimates; the modification does not affect the parameter estimation
process.

STANDARD | STD
specifies that the standard empirical estimation method be used. If you specify both right-
censoring and left-censoring, then the specification of this method has no effect. If you specify
any other combination of censoring or truncation effects, then this method ignores such effects,
and can thus result in estimates that are more biased than those obtained with other methods that
are more suitable for censored or truncated data.

TURNBULL | EM <(options)>
specifies that the Turnbull’s method be used. This method is used when you specify both right-
censoring and left-censoring. An iterative expectation-maximization (EM) algorithm proposed
by Turnbull (1976) is used to compute the empirical estimates. If you also specify truncation,
then the modification suggested by Frydman (1994) is used.

This method is used if you specify both right-censoring and left-censoring and if you explicitly
specify the EMPIRICALCDF=TURNBULL option.

You can modify the default behavior of the EM algorithm by using the following options:
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ENSUREMLE
specifies that the final EDF estimates be maximum likelihood estimates. The Kuhn-Tucker
conditions are computed for the likelihood maximization problem and checked to ensure
that EM algorithm converges to maximum likelihood estimates. The method generalizes
the method proposed by Gentleman and Geyer (1994) by taking into account any truncation
information that you might specify.

EPS=number
specifies the maximum relative error to be allowed between estimates of two consecutive
iterations. This criterion is used to check the convergence of the algorithm. If you do not
specify this option, then PROC HPSEVERITY uses a default value of 1.0E–8.

MAXITER=number
specifies the maximum number of iterations to attempt to find the empirical estimates. If
you do not specify this option, then PROC HPSEVERITY uses a default value of 500.

ZEROPROB=number
specifies the threshold below which an empirical estimate of the probability is considered
zero. This option is used to decide if the final estimate is a maximum likelihood estimate.
This option does not have an effect if you do not specify the ENSUREMLE option. If you
specify the ENSUREMLE option, but do not specify this option, then PROC HPSEVERITY
uses a default value of 1.0E–8.

For more information about each of the methods, see the section “Empirical Distribution Function
Estimation Methods” on page 298.

OBJECTIVE=symbol-name
names the symbol that represents the objective function in the SAS programming statements that you
specify. For each model to be estimated, PROC HPSEVERITY executes the programming statements to
compute the value of this symbol for each observation. The values are added across all observations to
obtain the value of the objective function. The optimization algorithm estimates the model parameters
such that the objective function value is minimized. A separate optimization problem is solved for each
candidate distribution. If you specify a BY statement, then a separate optimization problem is solved
for each candidate distribution within each BY group.

For more information about writing SAS programming statements to define your own objective
function, see the section “Custom Objective Functions” on page 336.

BY Statement
BY variable-list ;

A BY statement can be used in the HPSEVERITY procedure to process the input data set in groups of
observations defined by the BY variables. If you specify the BY statement, then PROC HPSEVERITY
expects the input data set to be sorted in the order of the BY variables unless you specify the NOTSORTED
option.

The BY statement is always supported in the single-machine mode of execution. For the distributed mode, it
is supported only when the DATA= data set resides on the client machine. In other words, the BY statement
is supported only in the client-data (or local-data) mode of the distributed computing model and not for any
of the alongside modes, such as the alongside-the-database or alongside-HDFS mode.
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CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the scale regression model. These
variables enter the analysis not through their values, but through levels to which the unique values are mapped.
For more information about these mappings, see the section “Levelization of Classification Variables” on
page 289.

If you specify a CLASS statement, then it must precede the SCALEMODEL statement.

You can specify options either as individual variable options or as global-options. You can specify options
for each variable by enclosing the options in parentheses after the variable name. You can also specify
global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that you specify in the CLASS statement. If you specify more than one CLASS statement, the
global-options that are specified in any one CLASS statement apply to all CLASS statements. However,
individual CLASS variable options override the global-options.

You can specify the following values for either an option or a global-option:

DESCENDING

DESC
reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER= options, the HPSEVERITY procedure orders the levels of classification variables according
to the ORDER= option and then reverses that order.

ORDER=DATA | FORMATTED | INTERNAL

ORDER=FREQ | FREQDATA | FREQFORMATTED | FREQINTERNAL
specifies the sort order for the levels of classification variables. This order is used by the parame-
terization method to create the parameters in the model. By default, ORDER=FORMATTED. For
ORDER=FORMATTED and ORDER=INTERNAL, the sort order is machine-dependent. When
ORDER=FORMATTED is in effect for numeric variables for which you have supplied no explicit
format, the levels are ordered by their internal values.

The following table shows how the HPSEVERITY procedure interprets values of the ORDER= option.

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric variables that have no

explicit format, which are sorted by their unformatted (internal) values
FREQ Descending frequency count (levels that have more observations come

earlier in the order)
FREQDATA Order of descending frequency count, and within counts by order of

appearance in the input data set when counts are tied
FREQFORMATTED Order of descending frequency count, and within counts by formatted value

when counts are tied
FREQINTERNAL Order of descending frequency count, and within counts by unformatted

(internal) value when counts are tied
INTERNAL Unformatted value
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For more information about sort order, see the chapter about the SORT procedure in Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REF=’level’ | keyword

REFERENCE=’level’ | keyword
specifies the reference level that is used when you specify PARAM=REFERENCE. For an individual
(but not a global) variable REF= option, you can specify the level of the variable to use as the reference
level. Specify the formatted value of the variable if a format is assigned. For a REF= option or
global-option, you can use one of the following keywords.

FIRST designates the first-ordered level as reference.

LAST designates the last-ordered level as reference.

By default, REF=LAST.

If you choose a reference level for any CLASS variable, all variables are parameterized in the reference
parameterization for computational efficiency. In other words, the HPSEVERITY procedure applies a
single parameterization method to all classification variables.

Suppose that the variable temp has three levels ('hot', 'warm', and 'cold') and that the variable
gender has two levels ('M' and 'F'). The following statements fit a scale regression model:

proc hpseverity;
loss y;
class gender(ref='F') temp;
scalemodel gender*temp gender;

run;

Both CLASS variables are in reference parameterization in this model. The reference levels are 'F'
for the variable gender and 'warm' for the variable temp, because the statements are equivalent to the
following statements:

proc hpseverity;
loss y;
class gender(ref='F') temp(ref=last);
scalemodel gender*temp gender;

run;

You can specify the following global-options:

MISSING
treats missing values (“.”, “.A”, . . . , “.Z” for numeric variables and blanks for character variables) as
valid values for the CLASS variable.

If you do not specify the MISSING option, observations that have missing values for CLASS variables
are removed from the analysis, even if the CLASS variables are not used in the model formulation.
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PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify the
following keywords:

GLM specifies a less-than-full-rank reference cell coding.

REFERENCE specifies a reference cell encoding. You can choose the reference value by specifying
an option for a specific variable or set of variables in the CLASS statement, or you
can designate the first- or last-ordered value by specifying a global-option. By default,
REFERENCE=LAST.

The GLM parameterization is the default. For more information about how parameterization of
classification variables affects the construction and interpretation of model effects, see the section
“Specification and Parameterization of Model Effects” on page 291.

TRUNCATE< =n >
specifies the truncation width of formatted values of CLASS variables when the optional n is specified.

If n is not specified, the TRUNCATE option requests that classification levels be determined by using
no more than the first 16 characters of the formatted values of CLASS variables.

DIST Statement
DIST distribution-name-or-keyword < (distribution-option) < distribution-name-or-keyword < (distribution-

option) > > . . . > < / preprocess-options > ;

The DIST statement specifies candidate distributions to be estimated by the HPSEVERITY procedure. You
can specify multiple DIST statements, and each statement can contain one or more distribution specifications.

For your convenience, PROC HPSEVERITY provides the following 10 different predefined distributions
(the name in the parentheses is the name to use in the DIST statement): Burr (BURR), exponential (EXP),
gamma (GAMMA), generalized Pareto (GPD), inverse Gaussian or Wald (IGAUSS), lognormal (LOGN),
Pareto (PARETO), Tweedie (TWEEDIE), scaled Tweedie (STWEEDIE), and Weibull (WEIBULL). These
are described in detail in the section “Predefined Distributions” on page 268.

You can specify any of the predefined distributions or any distribution that you have defined. If a distribution
that you specify is not a predefined distribution, then you must submit the CMPLIB= system option with
appropriate libraries before you submit the PROC HPSEVERITY step to enable the procedure to find the
functions associated with your distribution. The predefined distributions are defined in the Sashelp.Svrtdist
library. However, you are not required to specify this library in the CMPLIB= system option. For more
information about defining your own distributions, see the section “Defining a Severity Distribution Model
with the FCMP Procedure” on page 311.

As a convenience, you can also use a shortcut keyword to indicate a list of distributions. You can specify one
or more of the following keywords:

_ALL_
specifies all the predefined distributions and the distributions that you have defined in the libraries that
you specify in the CMPLIB= system option. In addition to the eight predefined distributions included
by the _PREDEFINED_ keyword, this list also includes the Tweedie and scaled Tweedie distributions
that are defined in the Sashelp.Svrtdist library.
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_PREDEFINED_
specifies the list of eight predefined distributions: BURR, EXP, GAMMA, GPD, IGAUSS, LOGN,
PARETO, and WEIBULL. Although the TWEEDIE and STWEEDIE distributions are available in the
Sashelp.Svrtdist library along with these eight distributions, they are not included by this keyword. If
you want to fit the TWEEDIE and STWEEDIE distributions, then you must specify them explicitly or
use the _ALL_ keyword.

_USER_
specifies the list of all the distributions that you have defined in the libraries that you specify in the
CMPLIB= system option. This list does not include the distributions defined in the Sashelp.Svrtdist
library, even if you specify the Sashelp.Svrtdist library in the CMPLIB= option.

The use of these keywords, especially _ALL_, can result in a large list of distributions, which might take a
longer time to estimate. A warning is printed to the SAS log if the number of total distribution models to
estimate exceeds 10.

If you specify the OUTCDF= option or request a CDF plot and you do not specify any DIST statement, then
PROC HPSEVERITY does not fit any distributions and produces the empirical estimates of the cumulative
distribution function.

The following distribution-option values can be used in the DIST statement for a distribution name that is not
a shortcut keyword:

INIT=(name=value . . . name=value)
specifies the initial values to be used for the distribution parameters to start the parameter estimation
process. You must specify the values by parameter names and the parameter names must match the
names used in the model definition. For example, let a model M’s definition contain a M_PDF function
with following signature:

function M_PDF(x, alpha, beta);

For this model, the names alpha and beta must be used for the INIT option. The names are case-
insensitive. If you do not specify initial values for some parameters in the INIT statement, then a
default value of 0.001 is assumed for those parameters. If you specify an incorrect parameter, PROC
HPSEVERITY prints a warning to the SAS log and does not fit the model. All specified values must
be nonmissing.

If you are modeling regression effects, then the initial value of the first distribution parameter (alpha
in the preceding example) should be the initial base value of the scale parameter or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects” on page 283.

The use of INIT= option is one of the three methods available for initializing the parameters. For
more information, see the section “Parameter Initialization” on page 282. If none of the initialization
methods is used, then PROC HPSEVERITY initializes all parameters to 0.001.

You can specify the following preprocess-options in the DIST statement:

LISTONLY
specifies that the list of all candidate distributions be printed to the SAS log without doing any further
processing on them. This option is especially useful when you use a shortcut keyword to include a list
of distributions. It enables you to find out which distributions are included by the keyword.
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VALIDATEONLY
specifies that all candidate distributions be checked for validity without doing any further processing on
them. If a distribution is invalid, the reason for invalidity is written to the SAS log. If all distributions
are valid, then the distribution information is written to the SAS log. The information includes name,
description, validity status (valid or invalid), and number of distribution parameters. The information
is not written to the SAS log if you specify an OUTMODELINFO= data set or the PRINT=DISTINFO
or PRINT=ALL option in the PROC HPSEVERITY statement. This option is especially useful
when you specify your own distributions or when you specify the _USER_ or _ALL_ keywords in
the DIST statement. It enables you to check whether your custom distribution definitions satisfy
PROC HPSEVERITY’s requirements for the specified modeling task. It is recommended that you
specify the SCALEMODEL statement if you intend to fit a model with regression effects, because the
SCALEMODEL statement instructs PROC HPSEVERITY to perform additional checks to validate
whether regression effects can be modeled on each candidate distribution.

LOSS Statement
LOSS < response-variable-name > < / censoring-truncation-options > ;

The LOSS statement specifies the name of the response or loss variable whose distribution needs to be
modeled. You can also specify additional options to indicate any truncation or censoring of the response. The
specification of response variable is optional if you specify at least one type of censoring. You must specify a
response variable if you do not specify any censoring. If you specify more than one LOSS statement, then
the first statement is used.

All the analysis variables that you specify in this statement must be present in the input data set that you
specify by using the DATA= option in the PROC HPSEVERITY statement. The response variable is expected
to have nonmissing values. If the variable has a missing value in an observation, then a warning is written to
the SAS log and that observation is ignored.

The following censoring-truncation-options can be used in the LOSS statement:

LEFTCENSORED | LC=variable-name

LEFTCENSORED | LC=number
specifies the left-censoring variable or a global left-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the left-censoring
limit. If the value of this variable is missing, then PROC HPSEVERITY assumes that such observations
are not left-censored.

Alternatively, you can use the number argument to specify a left-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of left-censoring, an exact value of the response is not known when it is less than or
equal to the left-censoring limit. If you specify the response variable and the value of that variable is less
than or equal to the value of the left-censoring limit for some observations, then PROC HPSEVERITY
treats such observations as left-censored and the value of the response variable is ignored. If you specify
the response variable and the value of that variable is greater than the value of the left-censoring limit
for some observations, then PROC HPSEVERITY assumes that such observations are not left-censored
and the value of the left-censoring limit is ignored.
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If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about left-censoring, see the section “Censoring and Truncation” on page 278.

LEFTTRUNCATED | LT=variable-name < (left-truncation-option) >

LEFTTRUNCATED | LT=number < (left-truncation-option) >
specifies the left-truncation variable or a global left-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the left-truncation
threshold. If the value of this variable is missing or 0 for some observations, then PROC HPSEVERITY
assumes that such observations are not left-truncated.

Alternatively, you can use the number argument to specify a left-truncation threshold that applies to all
the observations in the data set. This threshold must be a nonzero positive number.

It is assumed that the response variable contains the observed values. By the definition of left-truncation,
you can observe only a value that is greater than the left-truncation threshold. If a response variable
value is less than or equal to the left-truncation threshold, a warning is printed to the SAS log, and the
observation is ignored. For more information about left-truncation, see the section “Censoring and
Truncation” on page 278.

You can specify the following left-truncation-option for an alternative interpretation of the left-truncation
threshold:

PROBOBSERVED | POBS=number
specifies the probability of observability, which is defined as the probability that the underlying
severity event is observed (and recorded) for the specified left-threshold value.

The specified number must lie in the (0.0, 1.0] interval. A value of 1.0 is equivalent to specifying
that there is no left-truncation, because it means that no severity events can occur with a value less
than or equal to the threshold. If you specify value of 1.0, PROC HPSEVERITY prints a warning
to the SAS log and proceeds by assuming that LEFTTRUNCATED= option is not specified.

For more information, see the section “Probability of Observability” on page 279.

RIGHTCENSORED | RC=variable-name

RIGHTCENSORED | RC=number
specifies the right-censoring variable or a global right-censoring limit.

You can use the variable-name argument to specify a data set variable that contains the right-censoring
limit. If the value of this variable is missing, then PROC HPSEVERITY assumes that such observations
are not right-censored.

Alternatively, you can use the number argument to specify a right-censoring limit value that applies to
all the observations in the data set. This limit must be a nonzero positive number.

By the definition of right-censoring, an exact value of the response is not known when it is greater than
or equal to the right-censoring limit. If you specify the response variable and the value of that variable
is greater than or equal to the value of the right-censoring limit for some observations, then PROC
HPSEVERITY treats such observations as right-censored and the value of the response variable is
ignored. If you specify the response variable and the value of that variable is less than the value of the
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right-censoring limit for some observations, then PROC HPSEVERITY assumes that such observations
are not right-censored and the value of the right-censoring limit is ignored.

If you specify both right-censoring and left-censoring limits, then the left-censoring limit must be
greater than or equal to the right-censoring limit. If both limits are identical, then the observation is
assumed to be uncensored.

For more information about right-censoring, see the section “Censoring and Truncation” on page 278.

RIGHTTRUNCATED | RT=variable-name

RIGHTTRUNCATED | RT=number
specifies the right-truncation variable or a global right-truncation threshold.

You can use the variable-name argument to specify a data set variable that contains the right-truncation
threshold. If the value of this variable is missing for some observations, then PROC HPSEVERITY
assumes that such observations are not right-truncated.

Alternatively, you can use the number argument to specify a right-truncation threshold that applies to
all the observations in the data set. This threshold must be a nonzero positive number.

It is assumed that the response variable contains the observed values. By the definition of right-
truncation, you can observe only a value that is less than or equal to the right-truncation threshold.
If a response variable value is greater than the right-truncation threshold, a warning is printed to the
SAS log, and the observation is ignored. For more information about right-truncation, see the section
“Censoring and Truncation” on page 278.

NLOPTIONS Statement
NLOPTIONS options ;

The HPSEVERITY procedure uses the nonlinear optimization (NLO) subsystem to perform the nonlinear
optimization of the likelihood function to obtain the estimates of distribution and regression parameters.
You can use the NLOPTIONS statement to control different aspects of this optimization process. For most
problems, the default settings of the optimization process are adequate. However, in some cases it might be
useful to change the optimization technique or to change the maximum number of iterations. The following
statement uses the MAXITER= option to set the maximum number of iterations to 200 and uses the TECH=
option to change the optimization technique to the double-dogleg optimization (DBLDOG) rather than the
default technique, the trust region optimization (TRUREG), that is used in the HPSEVERITY procedure:

nloptions tech=dbldog maxiter=200;

A discussion of the full range of options that can be used in the NLOPTIONS statement is given in Chapter 6,
“Nonlinear Optimization Methods” (SAS/ETS User’s Guide). The HPSEVERITY procedure supports all
those options except the options that are related to displaying the optimization information. You can use the
PRINT= option in the PROC HPSEVERITY statement to request the optimization summary and iteration
history. If you specify more than one NLOPTIONS statement, then the first statement is used.
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OUTSCORELIB Statement
OUTSCORELIB < OUTLIB= > fcmp-library-name options ;

The OUTSCORELIB statement specifies the library to write scoring functions to. Scoring functions enable
you to easily compute a distribution function on the fitted parameters of the distribution without going
through a potentially complex process of extracting the fitted parameter estimates from other output such as
the OUTEST= data set that is created by PROC HPSEVERITY.

If you specify the SCALEMODEL statement and if you specify interaction or classification effects, then
PROC HPSEVERITY ignores the OUTSCORELIB statement and does not generate scoring functions. In
other words, if you specify the SCALEMODEL statement, then PROC HPSEVERITY generates scoring
functions if you specify only singleton continuous effects in the SCALEMODEL statement.

You must specify the following option as the first option in the statement:

OUTLIB=fcmp-library-name
names the FCMP library to contain the scoring functions. PROC HPSEVERITY writes the scoring
functions to the FCMP library named fcmp-library-name. If a library or data set named fcmp-library-
name already exists, PROC HPSEVERITY deletes it before proceeding.

This option is similar to the OUTLIB= option that you would specify in a PROC FCMP statement,
except that fcmp-library-name must be a two-level name whereas the OUTLIB= option in the PROC
FCMP statement requires a three-level name. The third level of a three-level name specifies the package
to which the functions belong. You do not need to specify the package name in the fcmp-library-name,
because PROC HPSEVERITY automatically creates the package for you. By default, a separate
package is created for each distribution that has not failed to converge. Each package is named for a
distribution. For example, if you define and fit a distribution named mydist , and if mydist does not fail
to converge, then PROC HPSEVERITY creates a package named mydist in the OUTLIB= library that
you specify. Further, let the definition of the mydist distribution contain three distribution functions,
mydist_PDF(x,Parm1,Parm2), mydist_LOGCDF(x,Parm1,Parm2), and mydist_XYZ(x,Parm1,Parm2).
If you specify the OUTSCORELIB statement

outscorelib outlib=sasuser.scorefunc;

then the Sasuser.Scorefunc library contains the following three functions in a package named mydist :
SEV_PDF(x), SEV_LOGCDF(x), and SEV_XYZ(x).

The key feature of scoring functions is that they do not require the parameter arguments (Parm1 and
Parm2 in this example). The fitted parameter estimates are encoded inside the scoring function so
that you can compute or score the value of each function for a given value of the loss variable without
having to know or extract the parameter estimates through some other means.

For convenience, you can omit the OUTLIB= portion of the specification and just specify the name, as
in the following example:

outscorelib sasuser.scorefunc;
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When the HPSEVERITY procedure runs successfully, the fcmp-library-name is appended to the CMPLIB
system option, so you can immediately start using the scoring functions in a DATA step or PROC FCMP step.

You can specify the following options in the OUTSCORELIB statement:

COMMONPACKAGE

ONEPACKAGE
requests that only one common package be created to contain all the scoring functions.

If you specify this option, then all the scoring functions are created in a package called sevfit . For
each distribution function that has the name distribution_suffix , the name of the corresponding scoring
function is formed as SEV_suffix_distribution. For example, the scoring function of the distribution
function ‘MYDIST_BAR’ is named ‘SEV_BAR_MYDIST’.

If you do not specify this option, then all scoring functions for a distribution are created in a package
that has the same name as the distribution, and for each distribution function that has the name
distribution_suffix , the name of the corresponding scoring function is formed as SEV_suffix . For
example, the scoring function of the distribution function ‘MYDIST_BAR’ is named ‘SEV_BAR’.

OUTBYID=SAS-data-set
names the output data set to contain the unique identifier for each BY group. This unique identifier is
used as part of the name of the package or scoring function for each distribution. This is a required
option when you specify a BY statement in PROC HPSEVERITY.

The OUTBYID= data set contains one observation per BY group and a variable named _ID_ in addition
to the BY variables that you specify in the BY statement. The _ID_ variable contains the unique
identifier for each BY group. The identifier of the BY group is the decimal representation of the
sequence number of the BY group. The first BY group has an identifier of 1, the second BY group has
an identifier of 2, the tenth BY group has an identifier of 10, and so on.

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution, PROC HPSEVERITY creates as many packages as the number of BY groups. The
unique BY-group identifier is used as a suffix for the package name. For example, if your DATA= data
set has three BY groups and if you specify the OUTSCORELIB statement

outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid;

then for the distribution ‘MYDIST’, the Sasuser.Byscorefunc library contains the three packages
‘MYDIST1’, ‘MYDIST2’, and ‘MYDIST3’, and each package contains one scoring function named
‘SEV_BAR’ for each distribution function named ‘MYDIST_BAR’.

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, PROC HPSEVER-
ITY creates as many versions of the distribution function as the number of BY groups. The unique
BY-group identifier is used as a suffix for the function name. Extending the previous example, if you
specify the OUTSCORELIB statement with the COMMONPACKAGE option,

outscorelib outlib=sasuser.byscorefunc outbyid=sasuser.byid commonpackage;

then for the distribution function ‘MYDIST_BAR’ of the distribution ‘MYDIST’, the
Sasuser.Byscorefunc library contains the following three scoring functions: ‘SEV_BAR_MYDIST1’,
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‘SEV_BAR_MYDIST2’, and ‘SEV_BAR_MYDIST3’. All the scoring functions are created in one
common package named sevfit .

For both the preceding examples, the Sasuser.Byid data set contains three observations, one for each
BY group. The value of the _ID_ variable is 1 for the first BY group, 2 for the second BY group, and 3
for the third BY group.

For more information about scoring functions, see the section “Scoring Functions” on page 328.

PERFORMANCE Statement
PERFORMANCE options ;

The PERFORMANCE statement defines performance parameters for distributed and multithreaded comput-
ing, passes variables that describe the distributed computing environment, and requests detailed results about
the performance characteristics of PROC HPSEVERITY.

You can also use the PERFORMANCE statement to control whether a high-performance analytical procedure
runs in single-machine or distributed mode.

The PERFORMANCE statement is documented further in the section “PERFORMANCE Statement” on
page 36 of Chapter 3, “Shared Concepts and Topics.”

SCALEMODEL Statement
SCALEMODEL regression-effect-list < / scalemodel-options > ;

The SCALEMODEL statement specifies regression effects. A regression effect is formed from one or more
regressor variables according to effect construction rules. Each regression effect forms one element of X
in the linear model structure Xˇ that affects the scale parameter of the distribution. The SCALEMODEL
statement in conjunction with the CLASS statement supports a rich set of effects. Effects are specified by a
special notation that uses regressor variable names and operators. There are two types of regressor variables:
classification (or CLASS) variables and continuous variables. Classification variables can be either numeric
or character and are specified in a CLASS statement. To include CLASS variables in regression effects, you
must specify the CLASS statement so that it appears before the SCALEMODEL statement. A regressor
variable that is not declared in the CLASS statement is assumed to be continuous. For more information
about effect construction rules, see the section “Specification and Parameterization of Model Effects” on
page 291.

All the regressor variables must be present in the input data set that you specify by using the DATA= option
in the PROC HPSEVERITY statement. The scale parameter of each candidate distribution is linked to the
linear predictor Xˇ that includes an intercept. If a distribution does not have a scale parameter, then a model
based on that distribution is not estimated. If you specify more than one SCALEMODEL statement, then the
first statement is used.

The regressor variables are expected to have nonmissing values. If any of the variables has a missing value in
an observation, then a warning is written to the SAS log and that observation is ignored.

For more information about modeling regression effects, see the section “Estimating Regression Effects” on
page 283.
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You can specify the following scalemodel-options in the SCALEMODEL statement:

DFMIXTURE=method-name < (method-options) >
specifies the method for computing representative estimates of the cumulative distribution function
(CDF) and the probability density function (PDF).

When you specify regression effects, the scale of the distribution depends on the values of the regressors.
For a given distribution family, each observation in the input data set implies a different scaled version
of the distribution. To compute estimates of CDF and PDF that are comparable across different
distribution families, PROC HPSEVERITY needs to construct a single representative distribution
from all such distributions. You can specify one of the following method-name values to specify the
method that is used to construct the representative distribution. For more information about each of the
methods, see the section “CDF and PDF Estimates with Regression Effects” on page 287.

FULL
specifies that the representative distribution be the mixture of N distributions such that each
distribution has a scale value that is implied by each of the N observations that are used for
estimation. This method is the slowest.

MEAN
specifies that the representative distribution be the one-point mixture of the distribution whose
scale value is computed by using the mean of the N values of the linear predictor that are implied
by the N observations that are used for estimation. If you do not specify the DFMIXTURE=
option, then this method is used by default. This is also the fastest method.

QUANTILE < (K=q) >
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the quantiles from the sample of N values of the linear
predictor that are implied by the N observations that are used for estimation.

You can use the K= option to specify the number of distributions in the mixture. If you specify
K=q, then the mixture contains .q � 1/ distributions such that each distribution has as its scale
one of the .q � 1/-quantiles.

If you do not specify the K= option, then PROC HPSEVERITY uses the default of 2, which
implies the use of a one-point mixture with a distribution whose scale value is the median of all
scale values.

RANDOM < (random-method-options) >
specifies that the representative distribution be the mixture of a fixed number of distributions
whose scale values are computed by using the values of the linear predictor that are implied by
a randomly chosen subset of the set of all observations that are used for estimation. The same
subset of observations is used for each distribution family.
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You can specify the following random-method-options to specify how the subset is chosen:

K=r
specifies the number of distributions to include in the mixture. If you do not specify this
option, then PROC HPSEVERITY uses the default of 15.

SEED=number
specifies the seed that is used to generate the uniform random sample of observation indices.
If you do not specify this option, then PROC HPSEVERITY generates a seed internally that
is based on the current value of the system clock.

OFFSET=offset-variable-name
specifies the name of the offset variable in the scale regression model. An offset variable is a regressor
variable whose regression coefficient is known to be 1. For more information, see the section “Offset
Variable” on page 284.

WEIGHT Statement
WEIGHT variable-name ;

The WEIGHT statement specifies the name of a variable whose values represent the weight of each obser-
vation. PROC HPSEVERITY associates a weight of w to each observation, where w is the value of the
WEIGHT variable for the observation. If the weight value is missing or less than or equal to 0, then the
observation is ignored and a warning is written to the SAS log. When you do not specify the WEIGHT
statement, each observation is assigned a weight of 1. If you specify more than one WEIGHT statement, then
the last statement is used.

The weights are normalized so that they add up to the actual sample size. In particular, the weight of each
observation is multiplied by NPN

iD1wi
, where N is the sample size.

Programming Statements
You can use a series of programming statements that use variables in the input data set that you specify in the
DATA= option in the PROC HPSEVERITY statement to assign a value to an objective function symbol. You
must specify the objective function symbol by using the OBJECTIVE= option in the PROC HPSEVERITY
statement. If you do not specify the OBJECTIVE= option in the PROC HPSEVERITY statement, then the
programming statements are ignored and models are estimated using the maximum likelihood method.

You can use most DATA step statements and functions in your program. Any additional functions, restrictions,
and differences are listed in the section “Custom Objective Functions” on page 336.
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Details: HPSEVERITY Procedure

Predefined Distributions
PROC HPSEVERITY assumes the following model for the response variable Y

Y � F.‚/

where F is a continuous probability distribution with parameters ‚. The model hypothesizes that the
observed response is generated from a stochastic process that is governed by the distribution F . This model
is usually referred to as the error model. Given a representative input sample of response variable values,
PROC HPSEVERITY estimates the model parameters for any distribution F and computes the statistics of fit
for each model. This enables you to find the distribution that is most likely to generate the observed sample.

A set of predefined distributions is provided with the HPSEVERITY procedure. A summary of the distribu-
tions is provided in Table 9.2. For each distribution, the table lists the name of the distribution that should be
used in the DIST statement, the parameters of the distribution along with their bounds, and the mathematical
expressions for the probability density function (PDF) and cumulative distribution function (CDF) of the
distribution.

All the predefined distributions, except LOGN and TWEEDIE, are parameterized such that their first
parameter is the scale parameter. For LOGN, the first parameter � is a log-transformed scale parameter.
TWEEDIE does not have a scale parameter. The presence of scale parameter or a log-transformed scale
parameter enables you to use all of the predefined distributions, except TWEEDIE, as a candidate for
estimating regression effects.

A distribution model is associated with each predefined distribution. You can also define your own distribution
model, which is a set of functions and subroutines that you define by using the FCMP procedure. For more
information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on page 311.
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Table 9.2 Predefined HPSEVERITY Distributions

Name Distribution Parameters PDF (f ) and CDF (F)

BURR Burr � > 0, ˛ > 0, f .x/ D ˛z

x.1Cz /.˛C1/

 > 0 F.x/ D 1 �
�

1
1Cz

�˛
EXP Exponential � > 0 f .x/ D 1

�
e�z

F.x/ D 1 � e�z

GAMMA Gamma � > 0, ˛ > 0 f .x/ D z˛e�z

x�.˛/

F.x/ D .˛;z/
�.˛/

GPD Generalized � > 0, � > 0 f .x/ D 1
�
.1C �z/�1�1=�

Pareto F.x/ D 1 � .1C �z/�1=�

IGAUSS Inverse Gaussian � > 0, ˛ > 0 f .x/ D 1
�

q
˛

2�z3
e
�˛.z�1/2

2z

(Wald) F.x/ D ˆ
�
.z � 1/

q
˛
z

�
C

ˆ
�
�.z C 1/

q
˛
z

�
e2˛

LOGN Lognormal � (no bounds), f .x/ D 1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2
� > 0 F.x/ D ˆ

�
log.x/��

�

�
PARETO Pareto � > 0, ˛ > 0 f .x/ D ˛�˛

.xC�/˛C1

F.x/ D 1 �
�

�
xC�

�˛
TWEEDIE Tweedie6 p > 1, � > 0, f .x/ D a.x; �/ exp

h
1
�

�
x�1�p

1�p
� �.�; p/

�i
� > 0 F.x/ D

R x
0 f .t/dt

STWEEDIE Scaled Tweedie6 � > 0, � > 0, f .x/ D a.x; �; �; p/ exp
�
�
x
�
� �

�
1 < p < 2 F.x/ D

R x
0 f .t/dt

WEIBULL Weibull � > 0, � > 0 f .x/ D 1
x
�z�e�z

�

F.x/ D 1 � e�z
�

Notes:
1. z D x=� , wherever z is used.
2. � denotes the scale parameter for all the distributions. For LOGN, log.�/ D �.
3. Parameters are listed in the order in which they are defined in the distribution model.
4. .a; b/ D

R b
0 t

a�1e�tdt is the lower incomplete gamma function.

5. ˆ.y/ D 1
2

�
1C erf

�
y
p
2

��
is the standard normal CDF.

6. For more information, see the section “Tweedie Distributions” on page 270.
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Tweedie Distributions

Tweedie distributions are a special case of the exponential dispersion family (Jørgensen 1987) with a property
that the variance of the distribution is equal to ��p , where � is the mean of the distribution, � is a dispersion
parameter, and p is an index parameter as discovered by Tweedie (1984). The distribution is defined for all
values of p except for values of p in the open interval .0; 1/. Many important known distributions are a special
case of Tweedie distributions including normal (p=0), Poisson (p=1), gamma (p=2), and the inverse Gaussian
(p=3). Apart from these special cases, the probability density function (PDF) of the Tweedie distribution
does not have an analytic expression. For p > 1, it has the form (Dunn and Smyth 2005),

f .xI�; �; p/ D a.x; �/ exp
�
1

�

�
x�1�p

1 � p
� �.�; p/

��
where �.�; p/ D �2�p=.2 � p/ for p ¤ 2 and �.�; p/ D log.�/ for p = 2. The function a.x; �/ does not
have an analytical expression. It is typically evaluated using series expansion methods described in Dunn and
Smyth (2005).

For 1 < p < 2, the Tweedie distribution is a compound Poisson-gamma mixture distribution, which is the
distribution of S defined as

S D

NX
iD1

Xi

where N � Poisson.�/ and Xi � gamma.˛; �/ are independent and identically distributed gamma random
variables with shape parameter ˛ and scale parameter � . At X = 0, the density is a probability mass that
is governed by the Poisson distribution, and for values of X > 0, it is a mixture of gamma variates with
Poisson mixing probability. The parameters �, ˛, and � are related to the natural parameters �, �, and p of
the Tweedie distribution as

� D
�2�p

�.2 � p/

˛ D
2 � p

p � 1

� D �.p � 1/�p�1

The mean of a Tweedie distribution is positive for p > 1.

Two predefined versions of the Tweedie distribution are provided with the HPSEVERITY procedure. The
first version, named TWEEDIE and defined for p > 1, has the natural parameterization with parameters �,
�, and p. The second version, named STWEEDIE and defined for 1 < p < 2, is the version with a scale
parameter. It corresponds to the compound Poisson-gamma distribution with gamma scale parameter � ,
Poisson mean parameter �, and the index parameter p. The index parameter decides the shape parameter ˛ of
the gamma distribution as

˛ D
2 � p

p � 1

The parameters � and � of the STWEEDIE distribution are related to the parameters� and � of the TWEEDIE
distribution as

� D ��˛

� D
.��˛/2�p

�.2 � p/
D

�

.p � 1/.��˛/p�1
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You can fit either version when there are no regression variables. Each version has its own merits. If you
fit the TWEEDIE version, you have the direct estimate of the overall mean of the distribution. If you are
interested in the most practical range of the index parameter 1 < p < 2, then you can fit the STWEEDIE
version, which provides you direct estimates of the Poisson and gamma components that comprise the
distribution (an estimate of the gamma shape parameter ˛ is easily obtained from the estimate of p).

If you want to estimate the effect of exogenous (regression) variables on the distribution, then you must use
the STWEEDIE version, because PROC HPSEVERITY requires a distribution to have a scale parameter in
order to estimate regression effects. For more information, see the section “Estimating Regression Effects”
on page 283. The gamma scale parameter � is the scale parameter of the STWEEDIE distribution. If you are
interested in determining the effect of regression variables on the mean of the distribution, you can do so
by first fitting the STWEEDIE distribution to determine the effect of the regression variables on the scale
parameter � . Then, you can easily estimate how the mean of the distribution � is affected by the regression
variables using the relationship � D c� , where c D �˛ D �.2�p/=.p� 1/. The estimates of the regression
parameters remain the same, whereas the estimate of the intercept parameter is adjusted by the estimates of
the � and p parameters.

Parameter Initialization for Predefined Distributions

The parameters are initialized by using the method of moments for all the distributions, except for the gamma
and the Weibull distributions. For the gamma distribution, approximate maximum likelihood estimates are
used. For the Weibull distribution, the method of percentile matching is used.

Given n observations of the severity value yi (1 � i � n), the estimate of kth raw moment is denoted by mk
and computed as

mk D
1

n

nX
iD1

yki

The 100pth percentile is denoted by �p (0 � p � 1). By definition, �p satisfies

F.�p�/ � p � F.�p/

where F.�p�/ D limh#0 F.�p � h/. PROC HPSEVERITY uses the following practical method of
computing �p . Let OFn.y/ denote the empirical distribution function (EDF) estimate at a severity value y. Let
y�p and yCp denote two consecutive values in the ascending sequence of y values such that OFn.y�p / < p and
OFn.y

C
p / � p. Then, the estimate O�p is computed as

O�p D y
�
p C

p � OFn.y
�
p /

OFn.y
C
p / � OFn.y

�
p /
.yCp � y

�
p /

Let � denote the smallest double-precision floating-point number such that 1C � > 1. This machine precision
constant can be obtained by using the CONSTANT function in Base SAS software.

The details of how parameters are initialized for each predefined distribution are as follows:

BURR The parameters are initialized by using the method of moments. The kth raw moment of the
Burr distribution is:

EŒXk� D
�k�.1C k=/�.˛ � k=/

�.˛/
; � < k < ˛
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Three moment equations EŒXk� D mk (k D 1; 2; 3) need to be solved for initializing the
three parameters of the distribution. In order to get an approximate closed form solution, the
second shape parameter O is initialized to a value of 2. If 2m3�3m1m2 > 0, then simplifying
and solving the moment equations yields the following feasible set of initial values:

O� D

r
m2m3

2m3 � 3m1m2
; Ǫ D 1C

m3

2m3 � 3m1m2
; O D 2

If 2m3 � 3m1m2 < �, then the parameters are initialized as follows:

O� D
p
m2; Ǫ D 2; O D 2

EXP The parameters are initialized by using the method of moments. The kth raw moment of the
exponential distribution is:

EŒXk� D �k�.k C 1/; k > �1

Solving EŒX� D m1 yields the initial value of O� D m1.

GAMMA The parameter ˛ is initialized by using its approximate maximum likelihood (ML) estimate.
For a set of n independent and identically distributed observations yi (1 � i � n) drawn from
a gamma distribution, the log likelihood l is defined as follows:

l D

nX
iD1

log

 
y˛�1i

e�yi=�

�˛�.˛/

!

D .˛ � 1/

nX
iD1

log.yi / �
1

�

nX
iD1

yi � n˛ log.�/ � n log.�.˛//

Using a shorter notation of
P

to denote
Pn
iD1 and solving the equation @l=@� D 0 yields the

following ML estimate of � :

O� D

P
yi

n˛
D
m1

˛

Substituting this estimate in the expression of l and simplifying gives

l D .˛ � 1/
X

log.yi / � n˛ � n˛ log.m1/C n˛ log.˛/ � n log.�.˛//

Let d be defined as follows:

d D log.m1/ �
1

n

X
log.yi /

Solving the equation @l=@˛ D 0 yields the following expression in terms of the digamma
function,  .˛/:

log.˛/ �  .˛/ D d

The digamma function can be approximated as follows:

O .˛/ � log.˛/ �
1

˛

�
0:5C

1

12˛ C 2

�
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This approximation is within 1.4% of the true value for all the values of ˛ > 0 except when
˛ is arbitrarily close to the positive root of the digamma function (which is approximately
1.461632). Even for the values of ˛ that are close to the positive root, the absolute error
between true and approximate values is still acceptable (j O .˛/� .˛/j < 0:005 for ˛ > 1:07).
Solving the equation that arises from this approximation yields the following estimate of ˛:

Ǫ D
3 � d C

p
.d � 3/2 C 24d

12d

If this approximate ML estimate is infeasible, then the method of moments is used. The kth
raw moment of the gamma distribution is:

EŒXk� D �k
�.˛ C k/

�.˛/
; k > �˛

Solving EŒX� D m1 and EŒX2� D m2 yields the following initial value for ˛:

Ǫ D
m21

m2 �m
2
1

If m2 �m21 < � (almost zero sample variance), then ˛ is initialized as follows:

Ǫ D 1

After computing the estimate of ˛, the estimate of � is computed as follows:

O� D
m1

Ǫ

Both the maximum likelihood method and the method of moments arrive at the same relation-
ship between Ǫ and O� .

GPD The parameters are initialized by using the method of moments. Notice that for � > 0, the
CDF of the generalized Pareto distribution (GPD) is:

F.x/ D 1 �

�
1C

�x

�

��1=�
D 1 �

�
�=�

x C �=�

�1=�
This is equivalent to a Pareto distribution with scale parameter �1 D �=� and shape pa-
rameter ˛ D 1=�. Using this relationship, the parameter initialization method used for the
PARETO distribution is used to get the following initial values for the parameters of the GPD
distribution:

O� D
m1m2

2.m2 �m
2
1/
; O� D

m2 � 2m
2
1

2.m2 �m
2
1/

If m2 � m21 < � (almost zero sample variance) or m2 � 2m21 < �, then the parameters are
initialized as follows:

O� D
m1

2
; O� D

1

2
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IGAUSS The parameters are initialized by using the method of moments. The standard parameterization
of the inverse Gaussian distribution (also known as the Wald distribution), in terms of the
location parameter � and shape parameter �, is as follows (Klugman, Panjer, and Willmot
1998, p. 583):

f .x/ D

r
�

2�x3
exp

�
��.x � �/2

2�2x

�
F.x/ D ˆ

 �
x

�
� 1

�r
�

x

!
Cˆ

 
�

�
x

�
C 1

�r
�

x

!
exp

�
2�

�

�
For this parameterization, it is known that the mean is EŒX� D � and the variance is
VarŒX� D �3=�, which yields the second raw moment as EŒX2� D �2.1C�=�/ (computed
by using EŒX2� D VarŒX�C .EŒX�/2).

The predefined IGAUSS distribution in PROC HPSEVERITY uses the following alternate
parameterization to allow the distribution to have a scale parameter, � :

f .x/ D

r
˛�

2�x3
exp

�
�˛.x � �/2

2x�

�
F.x/ D ˆ

 �x
�
� 1

�r˛�

x

!
Cˆ

 
�

�x
�
C 1

�r˛�

x

!
exp .2˛/

The parameters � (scale) and ˛ (shape) of this alternate form are related to the parameters �
and � of the preceding form such that � D � and ˛ D �=�. Using this relationship, the first
and second raw moments of the IGAUSS distribution are:

EŒX� D �

EŒX2� D �2
�
1C

1

˛

�
Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D m1; Ǫ D
m21

m2 �m
2
1

If m2 �m21 < � (almost zero sample variance), then the parameters are initialized as follows:

O� D m1; Ǫ D 1
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LOGN The parameters are initialized by using the method of moments. The kth raw moment of the
lognormal distribution is:

EŒXk� D exp
�
k�C

k2�2

2

�
Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D 2 log.m1/ �
log.m2/

2
; O� D

p
log.m2/ � 2 log.m1/

PARETO The parameters are initialized by using the method of moments. The kth raw moment of the
Pareto distribution is:

EŒXk� D
�k�.k C 1/�.˛ � k/

�.˛/
;�1 < k < ˛

Solving EŒX� D m1 and EŒX2� D m2 yields the following initial values:

O� D
m1m2

m2 � 2m
2
1

; Ǫ D
2.m2 �m

2
1/

m2 � 2m
2
1

If m2 � m21 < � (almost zero sample variance) or m2 � 2m21 < �, then the parameters are
initialized as follows:

O� D m1; Ǫ D 2

TWEEDIE The parameter p is initialized by assuming that the sample is generated from a gamma
distribution with shape parameter ˛ and by computing Op D ǪC2

ǪC1
. The initial value Ǫ is

obtained from using the method previously described for the GAMMA distribution. The
parameter � is the mean of the distribution. Hence, it is initialized to the sample mean as

O� D m1

Variance of a Tweedie distribution is equal to ��p. Thus, the sample variance is used to
initialize the value of � as

O� D
m2 �m

2
1

O� Op
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STWEEDIE STWEEDIE is a compound Poisson-gamma mixture distribution with mean � D ��˛, where
˛ is the shape parameter of the gamma random variables in the mixture and the parameter p is
determined solely by ˛. First, the parameter p is initialized by assuming that the sample is
generated from a gamma distribution with shape parameter ˛ and by computing Op D ǪC2

ǪC1
.

The initial value Ǫ is obtained from using the method previously described for the GAMMA
distribution. As done for initializing the parameters of the TWEEDIE distribution, the sample
mean and variance are used to compute the values O� and O� as

O� D m1

O� D
m2 �m

2
1

O� Op

Based on the relationship between the parameters of TWEEDIE and STWEEDIE distributions
described in the section “Tweedie Distributions” on page 270, values of � and � are initialized
as

O� D O�. Op � 1/ O�p�1

O� D
O�

O� Ǫ

WEIBULL The parameters are initialized by using the percentile matching method. Let q1 and q3 denote
the estimates of the 25th and 75th percentiles, respectively. Using the formula for the CDF of
Weibull distribution, they can be written as

1 � exp.�.q1=�/� / D 0:25
1 � exp.�.q3=�/� / D 0:75

Simplifying and solving these two equations yields the following initial values:

O� D exp
�
r log.q1/ � log.q3/

r � 1

�
; O� D

log.log.4//

log.q3/ � log. O�/

where r D log.log.4//= log.log.4=3//. These initial values agree with those suggested in
Klugman, Panjer, and Willmot (1998).

A summary of the initial values of all the parameters for all the predefined distributions is given in Table 9.3.
The table also provides the names of the parameters to use in the INIT= option in the DIST statement if you
want to provide a different initial value.
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Table 9.3 Parameter Initialization for Predefined Distributions

Distribution Parameter Name for INIT option Default Initial Value

BURR � theta
q

m2m3
2m3�3m1m2

˛ alpha 1C m3
2m3�3m1m2

 gamma 2

EXP � theta m1

GAMMA � theta m1=˛

˛ alpha 3�dC
p
.d�3/2C24d

12d

GPD � theta m1m2=.2.m2 �m
2
1//

� xi .m2 � 2m
2
1/=.2.m2 �m

2
1//

IGAUSS � theta m1
˛ alpha m21=.m2 �m

2
1/

LOGN � mu 2 log.m1/ � log.m2/=2
� sigma

p
log.m2/ � 2 log.m1/

PARETO � theta m1m2=.m2 � 2m
2
1/

˛ alpha 2.m2 �m
2
1/=.m2 � 2m

2
1/

TWEEDIE � mu m1
� phi .m2 �m

2
1/=m

p
1

p p .˛ C 2/=.˛ C 1/

where ˛ D 3�dC
p
.d�3/2C24d

12d

STWEEDIE � theta .m2 �m
2
1/.p � 1/=m1

� lambda m21=.˛.m2 �m
2
1/.p � 1//

p p .˛ C 2/=.˛ C 1/

where ˛ D 3�dC
p
.d�3/2C24d

12d

WEIBULL � theta exp
�
r log.q1/�log.q3/

r�1

�
� tau log.log.4//=.log.q3/ � log. O�//

Notes:
� mk denotes the kth raw moment
� d D log.m1/ � .

P
log.yi //=n

� q1 and q3 denote the 25th and 75th percentiles, respectively
� r D log.log.4//= log.log.4=3//
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Censoring and Truncation
One of the key features of PROC HPSEVERITY is that it enables you to specify whether the severity event’s
magnitude is observable and if it is observable, then whether the exact value of the magnitude is known. If an
event is unobservable when the magnitude is in certain intervals, then it is referred to as a truncation effect. If
the exact magnitude of the event is not known, but it is known to have a value in a certain interval, then it is
referred to as a censoring effect.

PROC HPSEVERITY allows a severity event to be subject to any combination of the following four censoring
and truncation effects:

• Left-truncation: An event is said to be left-truncated if it is observed only when Y > T l , where
Y denotes the random variable for the magnitude and T l denotes a random variable for the trunca-
tion threshold. You can specify left-truncation using the LEFTTRUNCATED= option in the LOSS
statement.

• Right-truncation: An event is said to be right-truncated if it is observed only when Y � T r , where Y
denotes the random variable for the magnitude and T r denotes a random variable for the truncation
threshold. You can specify right-truncation using the RIGHTTRUNCATED= option in the LOSS
statement.

• Left-censoring: An event is said to be left-censored if it is known that the magnitude is Y � C l , but
the exact value of Y is not known. C l is a random variable for the censoring limit. You can specify
left-censoring using the LEFTCENSORED= option in the LOSS statement.

• Right-censoring: An event is said to be right-censored if it is known that the magnitude is Y > C r ,
but the exact value of Y is not known. C r is a random variable for the censoring limit. You can specify
right-censoring using the RIGHTCENSORED= option in the LOSS statement.

For each effect, you can specify a different threshold or limit for each observation or specify a single threshold
or limit that applies to all the observations.

If all the four types of effects are present on an event, then the following relationship holds: T l < C r �

C l � T r . PROC HPSEVERITY checks these relationships and write a warning to the SAS log if any is
violated.

If you specify the response variable in the LOSS statement, then PROC HPSEVERITY also checks whether
each observation satisfies the definitions of the specified censoring and truncation effects. If you specify
left-truncation, then PROC HPSEVERITY ignores observations where Y � T l , because such observations
are not observable by definition. Similarly, if you specify right-truncation, then PROC HPSEVERITY ignores
observations where Y > T r . If you specify left-censoring, then PROC HPSEVERITY treats an observation
with Y > C l as uncensored and ignores the value of C l . The observations with Y � C l are considered
as left-censored, and the value of Y is ignored. If you specify right-censoring, then PROC HPSEVERITY
treats an observation with Y � C r as uncensored and ignores the value of C r . The observations with
Y > C r are considered as right-censored, and the value of Y is ignored. If you specify both left-censoring
and right-censoring, it is referred to as interval-censoring. If C r < C l is satisfied for an observation, then
it is considered as interval-censored and the value of the response variable is ignored. If C r D C l for an
observation, then PROC HPSEVERITY assumes that observation to be uncensored. If all the observations in
a data set are censored in some form, then the specification of the response variable in the LOSS statement is
optional, because the actual value of the response variable is not required for the purposes of estimating a
model.
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Specification of censoring and truncation affects the likelihood of the data (see the section “Likelihood
Function” on page 280) and how the empirical distribution function (EDF) is estimated (see the section
“Empirical Distribution Function Estimation Methods” on page 298).

Probability of Observability

For left-truncated data, PROC HPSEVERITY also enables you to provide additional information in the form
of probability of observability by using the PROBOBSERVED= option. It is defined as the probability that the
underlying severity event gets observed (and recorded) for the specified left-truncation threshold value. For
example, if you specify a value of 0.75, then for every 75 observations recorded above a specified threshold,
25 more events have happened with a severity value less than or equal to the specified threshold. Although
the exact severity value of those 25 events is not known, PROC HPSEVERITY can use the information about
the number of those events.

In particular, for each left-truncated observation, PROC HPSEVERITY assumes a presence of .1 � p/=p
additional observations with yi D ti . These additional observations are then used for computing the
likelihood (see the section “Probability of Observability and Likelihood” on page 281) and an unconditional
estimate of the empirical distribution function (see the section “EDF Estimates and Truncation” on page 303).

Truncation and Conditional CDF Estimates

If you specify left-truncation without the probability of observability or if you specify right-truncation, then
the EDF estimates that are computed by all methods except the STANDARD method are conditional on the
truncation information. See the section “EDF Estimates and Truncation” on page 303 for more information.
In such cases, PROC HPSEVERITY uses conditional estimates of the CDF for computational or visual
comparison to the EDF estimates.

Let t lmin D minift li g be the smallest value of the left-truncation threshold (t li is the left-truncation threshold
for observation i) and trmax D maxiftri g be the largest value of the right-truncation threshold (tri is the
right-truncation threshold for observation i). If OF .y/ denotes the unconditional estimate of the CDF at y,
then the conditional estimate OF c.y/ is computed as follows:

• If you do not specify the probability of observability, then the EDF estimates are conditional on the
left-truncation information. If an observation is both left-truncated and right-truncated, then

OF c.y/ D
OF .y/ � OF .t lmin/

OF .trmax/ �
OF .t lmin/

If an observation is left-truncated but not right-truncated, then

OF c.y/ D
OF .y/ � OF .t lmin/

1 � OF .t lmin/

If an observation is right-truncated but not left-truncated, then

OF c.y/ D
OF .y/

OF .trmax/

• If you specify the probability of observability, then EDF estimates are not conditional on the left-
truncation information. If an observation is not right-truncated, then the conditional estimate is the
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same as the unconditional estimate. If an observation is right-truncated, then the conditional estimate
is computed as

OF c.y/ D
OF .y/

OF .trmax/

If you specify regression effects, then OF .y/, OF .t lmin/, and OF .trmax/ are all computed from a mixture distribu-
tion, as described in the section “CDF and PDF Estimates with Regression Effects” on page 287.

Parameter Estimation Method
If you do not specify a custom objective function by specifying programming statements and the OB-
JECTIVE= option in the PROC HPSEVERITY statement, then PROC HPSEVERITY uses the maximum
likelihood (ML) method to estimate the parameters of each model. A nonlinear optimization process is
used to maximize the log of the likelihood function. If you specify a custom objective function, then
PROC HPSEVERITY uses a nonlinear optimization algorithm to estimate the parameters of each model
that minimize the value of your specified objective function. For more information, see the section “Custom
Objective Functions” on page 336.

Likelihood Function

Let f‚.x/ and F‚.x/ denote the PDF and CDF, respectively, evaluated at x for a set of parameter values ‚.
Let Y denote the random response variable, and let y denote its value recorded in an observation in the input
data set. Let T l and T r denote the random variables for the left-truncation and right-truncation threshold,
respectively, and let t l and tr denote their values for an observation, respectively. If there is no left-truncation,
then t l D � l , where � l is the smallest value in the support of the distribution; so F.t l/ D 0. If there is no
right-truncation, then tr D �h, where �h is the largest value in the support of the distribution; so F.tr/ D 1.
Let C l and C r denote the random variables for the left-censoring and right-censoring limit, respectively, and
let cl and cr denote their values for an observation, respectively. If there is no left-censoring, then cl D �h;
so F.cl/ D 1. If there is no right-censoring, then cr D � l ; so F.cr/ D 0.

The set of input observations can be categorized into the following four subsets within each BY group:

• E is the set of uncensored and untruncated observations. The likelihood of an observation in E is

lE D Pr.Y D y/ D f‚.y/

• Et is the set of uncensored observations that are truncated. The likelihood of an observation in Et is

lEt D Pr.Y D yjt l < Y � tr/ D
f‚.y/

F‚.tr/ � F‚.t l/

• C is the set of censored observations that are not truncated. The likelihood of an observation C is

lC D Pr.cr < Y � cl/ D F‚.cl/ � F‚.cr/

• Ct is the set of censored observations that are truncated. The likelihood of an observation Ct is

lCt D Pr.cr < Y � cl jt l < Y � tr/ D
F‚.c

l/ � F‚.c
r/

F‚.tr/ � F‚.t l/



Parameter Estimation Method F 281

Note that .E [Et /\ .C [Ct / D ;. Also, the sets Et and Ct are empty when you do not specify truncation,
and the sets C and Ct are empty when you do not specify censoring.

Given this, the likelihood of the data L is as follows:

L D
Y
E

f‚.y/
Y
Et

f‚.y/

F‚.tr/ � F‚.t l/

Y
C

F‚.c
l/ � F‚.c

r/
Y
Ct

F‚.c
l/ � F‚.c

r/

F‚.tr/ � F‚.t l/

The maximum likelihood procedure used by PROC HPSEVERITY finds an optimal set of parameter values
O‚ that maximizes log.L/ subject to the boundary constraints on parameter values. For a distribution dist ,

you can specify such boundary constraints by using the dist_LOWERBOUNDS and dist_UPPERBOUNDS
subroutines. For more information, see the section “Defining a Severity Distribution Model with the
FCMP Procedure” on page 311. Some aspects of the optimization process can be controlled by using the
NLOPTIONS statement.

Probability of Observability and Likelihood

If you specify the probability of observability for the left-truncation, then PROC HPSEVERITY uses a
modified likelihood function for each truncated observation. If the probability of observability is p 2
.0:0; 1:0�, then for each left-truncated observation with truncation threshold t l , there exist .1 � p/=p
observations with a response variable value less than or equal to t l . Each such observation has a probability
of Pr.Y � t l/ D F‚.t

l/. The right-truncation and censoring information does not apply to these added
observations. Thus, following the notation of the section “Likelihood Function” on page 280, the likelihood
of the data is as follows:

L D
Y
E

f‚.y/
Y

Et ;t lD� l

f‚.y/

F‚.tr/

Y
Et ;t l>� l

f‚.y/

F‚.tr/
F‚.t

l/
1�p
p

Y
C

F‚.c
l/ � F‚.c

r/
Y

Ct ;t lD� l

F‚.c
l/ � F‚.c

r/

F‚.tr/

Y
Ct ;t l>� l

F‚.c
l/ � F‚.c

r/

F‚.tr/
F‚.t

l/
1�p
p

Note that the likelihood of the observations that are not left-truncated (observations in sets E and C, and
observations in sets Et and Ct for which t l D � l ) is not affected.

If you specify a custom objective function, then PROC HPSEVERITY accounts for the probability of
observability only while computing the empirical distribution function estimate. The parameter estimates are
affected only by your custom objective function.

Estimating Covariance and Standard Errors

PROC HPSEVERITY computes an estimate of the covariance matrix of the parameters by using the
asymptotic theory of the maximum likelihood estimators (MLE). If N denotes the number of observations
used for estimating a parameter vector ��� , then the theory states that as N !1, the distribution of O��� , the
estimate of ��� , converges to a normal distribution with mean ��� and covariance OC such that I.���/ � OC! 1, where
I.���/ D �E

�
r2 log.L.���//

�
is the information matrix for the likelihood of the data, L.���/. The covariance

estimate is obtained by using the inverse of the information matrix.
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In particular, if G D r2.� log.L.���/// denotes the Hessian matrix of the negative of log likelihood, then the
covariance estimate is computed as

OC D
N

d
G�1

where d is a denominator that is determined by the VARDEF= option. If VARDEF=N, then d D N ,
which yields the asymptotic covariance estimate. If VARDEF=DF, then d D N � k, where k is number of
parameters (the model’s degrees of freedom). The VARDEF=DF option is the default, because it attempts to
correct the potential bias introduced by the finite sample.

The standard error si of the parameter �i is computed as the square root of the ith diagonal element of the

estimated covariance matrix; that is, si D
q
OCi i .

If you specify a custom objective function, then the covariance matrix of the parameters is still computed by
inverting the information matrix, except that the Hessian matrix G is computed as G D r2 log.U.���//, where
U denotes your custom objective function that is minimized by the optimizer.

Covariance and standard error estimates might not be available if the Hessian matrix is found to be singular
at the end of the optimization process. This can especially happen if the optimization process stops without
converging.

Parameter Initialization
PROC HPSEVERITY enables you to initialize parameters of a model in different ways. A model can have
two kinds of parameters: distribution parameters and regression parameters.

The distribution parameters can be initialized by using one of the following three methods:

INIT= option You can use the INIT= option in the DIST statement.

INEST= or INSTORE= option You can use either the INEST= data set or the INSTORE= item store, but
not both.

PARMINIT subroutine You can define a dist_PARMINIT subroutine in the distribution model.
For more information, see the section “Defining a Severity Distribution
Model with the FCMP Procedure” on page 311.

Note that only one of the initialization methods is used. You cannot combine them. They are used in the
following order:

• The method that uses the INIT= option takes the highest precedence. If you use the INIT= option
to provide an initial value for at least one parameter, then other initialization methods (INEST=,
INSTORE=, or PARMINIT) are not used. If you specify initial values for some but not all the
parameters by using the INIT= option, then the uninitialized parameters are initialized to the default
value of 0.001.

If you use this option and if you specify the regression effects, then the value of the first distribution
parameter must be related to the initial value for the base value of the scale or log-transformed scale
parameter. For more information, see the section “Estimating Regression Effects” on page 283.
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• The method that uses the INEST= data set or INSTORE= item store takes second precedence. If
the INEST= data set or INSTORE= item store contains a nonmissing value for even one distribution
parameter, then the PARMINIT method is not used and any uninitialized parameters are initialized to
the default value of 0.001.

• If none of the distribution parameters are initialized by using the INIT= option, the INEST= data
set, or the INSTORE= item store, but the distribution model defines a PARMINIT subroutine, then
PROC HPSEVERITY invokes that subroutine with appropriate inputs to initialize the parameters. If
the PARMINIT subroutine returns missing values for some parameters, then those parameters are
initialized to the default value of 0.001.

• If none of the initialization methods are used, each distribution parameter is initialized to the default
value of 0.001.

For more information about regression models and initialization of regression parameters, see the section
“Estimating Regression Effects” on page 283.

PARMINIT-Based Parameter Initialization Method and Distributed Data

If you specify a distributed mode of execution for the procedure, then the input data are distributed across the
computational nodes. For more information about the distributed computing model, see the section “Dis-
tributed and Multithreaded Computation” on page 309. If the PARMINIT subroutine is used for initializing
the distribution parameters, then PROC HPSEVERITY invokes that subroutine on each computational node
with the data that are local to that node. The EDF estimates that are supplied to the PARMINIT subroutine are
also computed using the local data. The initial values of the parameters that are supplied to the optimizer are
the average of the local estimates that are computed on each node. This approach works well if the data are
distributed randomly across nodes. If you distribute the data on the appliance before you run the procedure
(alongside-the-database model), then you should try to make the distribution as random as possible in order to
increase the chances of computing good initial values. If you specify a data set that is not distributed before
you run the procedure, then PROC HPSEVERITY distributes the data for you by sending the first observation
to the first node, the second observation to the second node, and so on. If the order of observations is random,
then this method ensures random distribution of data across the computational nodes.

Estimating Regression Effects
The HPSEVERITY procedure enables you to estimate the influence of regression (exogenous) effects while
fitting a distribution if the distribution has a scale parameter or a log-transformed scale parameter.

Let xj , j D 1; : : : ; k, denote the k regression effects. Let ˇj denote the regression parameter that corresponds
to the effect xj . If you do not specify regression effects, then the model for the response variable Y is of the
form

Y � F.‚/

where F is the distribution of Y with parameters ‚. This model is usually referred to as the error model. The
regression effects are modeled by extending the error model to the following form:

Y � exp.
kX
jD1

ˇjxj / � F.‚/
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Under this model, the distribution of Y is valid and belongs to the same parametric family as F if and only
if F has a scale parameter. Let � denote the scale parameter and � denote the set of nonscale distribution
parameters of F . Then the model can be rewritten as

Y � F.�;�/

such that � is modeled by the regression effects as

� D �0 � exp.
kX
jD1

ˇjxj /

where �0 is the base value of the scale parameter. Thus, the scale regression model consists of the following
parameters: �0, �, and ˇj .j D 1; : : : ; k/.

Given this form of the model, distributions without a scale parameter cannot be considered when regression
effects are to be modeled. If a distribution does not have a direct scale parameter, then PROC HPSEVERITY
accepts it only if it has a log-transformed scale parameter—that is, if it has a parameter p D log.�/.

Offset Variable

You can specify that an offset variable be included in the scale regression model by specifying it in the
OFFSET= option of the SCALEMODEL statement. The offset variable is a regressor whose regression
coefficient is known to be 1. If xo denotes the offset variable, then the scale regression model becomes

� D �0 � exp.xo C
kX
jD1

ˇjxj /

The regression coefficient of the offset variable is fixed at 1 and not estimated, so it is not reported in
the ParameterEstimates ODS table. However, if you specify the OUTEST= data set, then the regression
coefficient is added as a variable to that data set. The value of the offset variable in OUTEST= data set is
equal to 1 for the estimates row (_TYPE_=‘EST’) and is equal to a special missing value (.F) for the standard
error (_TYPE_=‘STDERR’) and covariance (_TYPE_=‘COV’) rows.

An offset variable is useful to model the scale parameter per unit of some measure of exposure. For example,
in the automobile insurance context, measure of exposure can be the number of car-years insured or the total
number of miles driven by a fleet of cars at a rental car company. For worker’s compensation insurance,
if you want to model the expected loss per enterprise, then you can use the number of employees or total
employee salary as the measure of exposure. For epidemiological data, measure of exposure can be the
number of people who are exposed to a certain pathogen when you are modeling the loss associated with an
epidemic. In general, if e denotes the value of the exposure measure and if you specify xo D log.e/ as the
offset variable, then you are modeling the influence of other regression effects (xj ) on the size of the scale of
the distribution per unit of exposure.

Another use for an offset variable is when you have a priori knowledge of the influence of some exogenous
variables that cannot be included in the SCALEMODEL statement. You can model the combined influence
of such variables as an offset variable in order to correct for the omitted variable bias.
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Parameter Initialization for Regression Models

The regression parameters are initialized either by using the values that you specify or by the default method.

• If you provide initial values for the regression parameters, then you must provide valid, nonmissing
initial values for �0 and ˇj parameters for all j.

You can specify the initial value for �0 by using either the INEST= data set, the INSTORE= item
store, or the INIT= option in the DIST statement. If the distribution has a direct scale parameter (no
transformation), then the initial value for the first parameter of the distribution is used as an initial
value for �0. If the distribution has a log-transformed scale parameter, then the initial value for the first
parameter of the distribution is used as an initial value for log.�0/.

You can use only the INEST= data set or the INSTORE= item store, but not both, to specify the initial
values for ˇj . The requirements for each option are as follows:

– If you use the INEST= data set, then it must contain nonmissing initial values for all the regressors
that you specify in the SCALEMODEL statement. The only missing value that is allowed is
the special missing value .R, which indicates that the regressor is linearly dependent on other
regressors. If you specify .R for a regressor for one distribution in a BY group, you must specify
it the same way for all the distributions in that BY group.
Note that you cannot specify INEST= data set if the regression model contains effects that have
CLASS variables or interaction effects.

– The parameter estimates in the INSTORE= item store are used to initialize the parameters of a
model if the item store contains a model specification that matches the model specification in the
current PROC HPSEVERITY step according to the following rules:

* The distribution name and the number and names of the distribution parameters must match.

* The model in the item store must include a scale regression model whose regression parame-
ters match as follows:

· If the regression model in the item store does not contain any redundant parameters,
then at least one regression parameter must match. Initial values of the parameters that
match are set equal to the estimates that are read from the item store, and initial values
of the other regression parameters are set equal to the default value of 0.001.

· If the regression model in the item store contains any redundant parameters, then all the
regression parameters must match, and the initial values of all parameters are set equal
to the estimates that are read from the item store.

Note that a regression parameter is defined by the variables that form the underlying re-
gression effect and by the levels of the CLASS variables if the effect contains any CLASS
variables.

• If you do not specify valid initial values for �0 or ˇj parameters for all j, then PROC HPSEVERITY
initializes those parameters by using the following method:

Let a random variable Y be distributed as F.�;�/, where � is the scale parameter. By the definition of
the scale parameter, a random variable W D Y=� is distributed as G.�/ such that G.�/ D F.1;�/.
Given a random error term e that is generated from a distribution G.�/, a value y from the distribution
of Y can be generated as

y D � � e
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Taking the logarithm of both sides and using the relationship of � with the regression effects yields:

log.y/ D log.�0/C
kX
jD1

ˇjxj C log.e/

PROC HPSEVERITY makes use of the preceding relationship to initialize parameters of a regression
model with distribution dist as follows:

1. The following linear regression problem is solved to obtain initial estimates of ˇ0 and ˇj :

log.y/ D ˇ0 C
kX
jD1

ˇjxj

The estimates of ˇj .j D 1; : : : ; k/ in the solution of this regression problem are used to initialize
the respective regression parameters of the model. The estimate of ˇ0 is later used to initialize
the value of �0.
The results of this regression are also used to detect whether any regression parameters are
linearly dependent on the other regression parameters. If any such parameters are found, then a
warning is written to the SAS log and the corresponding parameter is eliminated from further
analysis. The estimates for linearly dependent regression parameters are denoted by a special
missing value of .R in the OUTEST= data set and in any displayed output.

2. Let s0 denote the initial value of the scale parameter.
If the distribution model of dist does not contain the dist_PARMINIT subroutine, then s0 and all
the nonscale distribution parameters are initialized to the default value of 0.001.
However, it is strongly recommended that each distribution’s model contain the dist_PARMINIT
subroutine. For more information, see the section “Defining a Severity Distribution Model with
the FCMP Procedure” on page 311. If that subroutine is defined, then s0 is initialized as follows:
Each input value yi of the response variable is transformed to its scale-normalized version wi as

wi D
yi

exp.ˇ0 C
Pk
jD1 ˇjxij /

where xij denotes the value of jth regression effect in the ith input observation. These wi values
are used to compute the input arguments for the dist_PARMINIT subroutine. The values that are
computed by the subroutine for nonscale parameters are used as their respective initial values.
If the distribution has an untransformed scale parameter, then s0 is set to the value of the scale
parameter that is computed by the subroutine. If the distribution has a log-transformed scale
parameter P, then s0 is computed as s0 D exp.l0/, where l0 is the value of P computed by the
subroutine.

3. The value of �0 is initialized as

�0 D s0 � exp.ˇ0/
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Reporting Estimates of Regression Parameters

When you request estimates to be written to the output (either ODS displayed output or in the OUTEST= data
set), the estimate of the base value of the first distribution parameter is reported. If the first parameter is the log-
transformed scale parameter, then the estimate of log.�0/ is reported; otherwise, the estimate of �0 is reported.
The transform of the first parameter of a distribution dist is controlled by the dist_SCALETRANSFORM
function that is defined for it.

CDF and PDF Estimates with Regression Effects

When regression effects are estimated, the estimate of the scale parameter depends on the values of the
regressors and the estimates of the regression parameters. This dependency results in a potentially different
distribution for each observation. To make estimates of the cumulative distribution function (CDF) and
probability density function (PDF) comparable across distributions and comparable to the empirical distri-
bution function (EDF), PROC HPSEVERITY computes and reports the CDF and PDF estimates from a
representative distribution. The representative distribution is a mixture of a certain number of distributions,
where each distribution differs only in the value of the scale parameter. You can specify the number of
distributions in the mixture and how their scale values are chosen by using the DFMIXTURE= option in the
SCALEMODEL statement.

Let N denote the number of observations that are used for estimation, K denote the number of components
in the mixture distribution, sk denote the scale parameter of the kth mixture component, and dk denote the
weight associated with kth mixture component.

Let f .yI sk; O�/ and F.yI sk; O�/ denote the PDF and CDF, respectively, of the kth component distribution,
where O� denotes the set of estimates of all parameters of the distribution other than the scale parameter. Then,
the PDF and CDF estimates, f �.y/ and F �.y/, respectively, of the mixture distribution at y are computed as

f �.y/ D
1

D

KX
kD1

dkf .yI sk; O�/

F �.y/ D
1

D

KX
kD1

dkF.yI sk; O�/

where D is the normalization factor (D D
PK
kD1 dk).

PROC HPSEVERITY uses the F �.y/ values to compute the EDF-based statistics of fit and to create the
OUTCDF= data set and the CDF plots. The PDF estimates that it plots in the PDF plots are the f �.y/ values.

The scale values sk for the K mixture components are derived from the set fO�ig (i D 1; : : : ; N ) of N linear
predictor values, where O�i denotes the estimate of the linear predictor due to observation i. It is computed as

O�i D log. O�0/C
kX
jD1

Ǒ
jxij

where O�0 is an estimate of the base value of the scale parameter, Ǒj are the estimates of regression coefficients,
and xij is the value of jth regression effect in observation i.

Let wi denote the weight of observation i. If you specify the WEIGHT statement, then the weight is equal to
the value of the specified weight variable for the corresponding observation in the DATA= data set; otherwise,
the weight is set to 1.
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You can specify one of the following method-names in the DFMIXTURE= option in the SCALEMODEL
statement to specify the method of choosing K and the corresponding sk and dk values:

FULL In this method, there are as many mixture components as the number of observations that
are used for estimation. In other words, K = N, sk D O�k , and dk D wk (k D 1; : : : ; N ).
This is the slowest method, because it requires O.N/ computations to compute the
mixture CDF F �.yi / or the mixture PDF f �.yi / of one observation. For N observations,
the computational complexity in terms of number of CDF or PDF evaluations is O.N 2/.
Even for moderately large values of N, the time that is taken to compute the mixture CDF
and PDF can significantly exceed the time that is taken to estimate the model parameters.
So it is recommended that you use the FULL method only for small data sets.

MEAN In this method, the mixture contains only one distribution, whose scale value is determined
by the mean of the linear predictor values that are implied by all the observations. In other
words, s1 is computed as

s1 D exp

 
1

N

NX
iD1

O�i

!
The component’s weight d1 is set to 1.

This method is the fastest because it requires only one CDF or PDF evaluation per
observation. The computational complexity is O.N/ for N observations.

If you do not specify the DFMIXTURE= option in the SCALEMODEL statement, then
this is the default method.

QUANTILE In this method, a certain number of quantiles are chosen from the set of all linear predictor
values. If you specify a value of q for the K= option when specifying this method, then
K D q � 1 and sk (k D 1; : : : ; K) is computed as sk D exp. O�k/, where O�k is the kth
q-quantile from the set fO�ig (i D 1; : : : ; N ). The weight of each of the components (dk)
is assumed to be 1 for this method.

The default value of q is 2, which implies a one-point mixture that has a distribution
whose scale value is equal to the median scale value.

For this method, PROC HPSEVERITY needs to sort the N linear predictor values in
the set fO�ig; the sorting requires O.N log.N // computations. Then, computing the
mixture estimate of one observation requires .q � 1/ CDF or PDF evaluations. Hence,
the computational complexity of this method is O.qN/CO.N log.N // for computing
a mixture CDF or PDF of N observations. For q << N , the QUANTILE method is
significantly faster than the FULL method.

RANDOM In this method, a uniform random sample of observations is chosen, and the mixture
contains the distributions that are implied by those observations. If you specify a value of
r for the K= option when specifying this method, then the size of the sample is r . Hence,
K D r . If lj denotes the index of jth observation in the sample (j D 1; : : : ; r ), such that
1 � lj � N , then the scale of kth component distribution in the mixture is sk D exp. O�lk /.
The weight of each of the components (dk) is assumed to be 1 for this method.

You can also specify the seed to be used for generating the random sample by using the
SEED= option for this method. The same sample of observations is used for all models.

Computing a mixture estimate of one observation requires r CDF or PDF evaluations.
Hence, the computational complexity of this method is O.rN/ for computing a mixture
CDF or PDF of N observations. For r << N , the RANDOM method is significantly
faster than the FULL method.
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Levelization of Classification Variables
A classification variable enters the statistical analysis or model not through its values but through its levels.
The process of associating values of a variable with levels is called levelization.

During the process of levelization, observations that share the same value are assigned to the same level. The
manner in which values are grouped can be affected by the inclusion of formats. You can determine the sort
order of the levels by specifying the ORDER= option in the CLASS statement. You can also control the sort
order separately for each variable in the CLASS statement.

Consider the data on nine observations in Table 9.4. The variable A is integer-valued, and the variable X is
a continuous variable that has a missing value for the fourth observation. The fourth and fifth columns of
Table 9.4 apply two different formats to the variable X.

Table 9.4 Example Data for Levelization

Obs A X FORMAT
X 3.0

FORMAT
X 3.1

1 2 1.09 1 1.1
2 2 1.13 1 1.1
3 2 1.27 1 1.3
4 3 . . .
5 3 2.26 2 2.3
6 3 2.48 2 2.5
7 4 3.34 3 3.3
8 4 3.34 3 3.3
9 4 3.14 3 3.1

By default, levelization of the variables groups the observations by the formatted value of the variable, except
for numerical variables for which no explicit format is provided. Those numerical variables are sorted by their
internal value. The levelization of the four columns in Table 9.4 leads to the level assignment in Table 9.5.

Table 9.5 Values and Levels

A X FORMAT X 3.0 FORMAT X 3.1
Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 1 1 1 1.1 1
2 2 1 1.13 2 1 1 1.1 1
3 2 1 1.27 3 1 1 1.3 2
4 3 2 . . . . . .
5 3 2 2.26 4 2 2 2.3 3
6 3 2 2.48 5 2 2 2.5 4
7 4 3 3.34 7 3 3 3.3 6
8 4 3 3.34 7 3 3 3.3 6
9 4 3 3.14 6 3 3 3.1 5
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You can specify the sort order for the levels of CLASS variables in the ORDER= option in the CLASS
statement.

When ORDER=FORMATTED (which is the default) is in effect for numeric variables for which you have
supplied no explicit format, the levels are ordered by their internal values. To order numeric class levels that
have no explicit format by their BEST12. formatted values, you can specify the BEST12. format explicitly
for the CLASS variables.

Table 9.6 shows how values of the ORDER= option are interpreted.

Table 9.6 Interpretation of Values of ORDER= Option

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
that have no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count (levels that have the most
observations come first in the order)

INTERNAL Unformatted value

FREQDATA Order of descending frequency count, and within counts
by order of appearance in the input data set when counts
are tied

FREQFORMATTED Order of descending frequency count, and within counts
by formatted value when counts are tied

FREQINTERNAL Order of descending frequency count, and within counts
by unformatted (internal) value when counts are tied

For FORMATTED, FREQFORMATTED, FREQINTERNAL, and INTERNAL values, the sort order is
machine-dependent. For more information about sort order, see the chapter about the SORT procedure in
the Base SAS Procedures Guide and the discussion of BY-group processing in SAS Language Reference:
Concepts.

When you specify the MISSING option in the CLASS statement, the missing values (‘.’ for a numeric
variable and blanks for a character variable) are included in the levelization and are assigned a level. Table 9.7
displays the results of levelizing the values in Table 9.4 when the MISSING option is in effect.

Table 9.7 Values and Levels with the MISSING Option

A X FORMAT x 3.0 FORMAT x 3.1
Obs Value Level Value Level Value Level Value Level

1 2 1 1.09 2 1 2 1.1 2
2 2 1 1.13 3 1 2 1.1 2
3 2 1 1.27 4 1 2 1.3 3
4 3 2 . 1 . 1 . 1
5 3 2 2.26 5 2 3 2.3 4
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Table 9.7 continued

A X format x 3.0 format x 3.1
Obs Value Level Value Level Value Level Value Level

6 3 2 2.48 6 2 3 2.5 5
7 4 3 3.34 8 3 4 3.3 7
8 4 3 3.34 8 3 4 3.3 7
9 4 3 3.14 7 3 4 3.1 6

When you do not specify the MISSING option, it is important to understand the implications of missing values
for your statistical analysis. When PROC HPSEVERITY levelizes the CLASS variables, any observations
for which a CLASS variable has a missing value are excluded from the analysis. This is true regardless of
whether the variable is used to form the statistical model. For example, consider the case in which some
observations contain missing values for variable A but the records for these observations are otherwise
complete with respect to all other variables in the model. The analysis results that come from the following
statements do not include any observations for which variable A contains missing values, even though A is
not specified in the SCALEMODEL statement:

class A B;
scalemodel B x B*x;

You can request PROC HPSEVERITY to print the “Descriptive Statistics” table, which shows the number
of observations that are read from the data set and the number of observations that are used in the analysis.
Pay careful attention to this table—especially when your data set contains missing values—to ensure that no
observations are unintentionally excluded from the analysis.

Specification and Parameterization of Model Effects
PROC HPSEVERITY supports formation of regression effects in the SCALEMODEL statement. A regression
effect is formed from one or more regressor variables according to effect construction rules (parameterization).
Each regression effect forms one element of X in the linear model structure Xˇ that affects the scale parameter.
The SCALEMODEL statement in conjunction with the CLASS statement supports a rich set of effects. In
order to correctly interpret the results, you need to understand the specification and parameterization of
effects that are discussed in this section.

Effects are specified by a special notation that uses variable names and operators. There are two types of
regressor variables: classification (or CLASS) variables and continuous variables. Classification variables
can be either numeric or character and are specified in a CLASS statement. For more information, see the
section “Levelization of Classification Variables” on page 289. A regressor variable that is not declared in the
CLASS statement is assumed to be continuous.

Two primary operators (crossing and nesting) are used for combining the variables, and several additional
operators are used to simplify effect specification. Operators are discussed in the section “Effect Operators”
on page 292.

If you specify the CLASS statement, then PROC HPSEVERITY supports a general linear model (GLM)
parameterization and a reference parameterization for the classification variables. The GLM parameterization
is the default. For more information, see the sections “GLM Parameterization of Classification Variables and
Effects” on page 294 and “Reference Parameterization” on page 297.
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Effect Operators

Table 9.8 summarizes the operators that are available for selecting and constructing effects. These operators
are discussed in the following sections.

Table 9.8 Available Effect Operators

Operator Example Description

Interaction A*B Crosses the levels of the effects
Nesting A(B) Nests A levels within B levels
Bar operator A | B | C Specifies all interactions
At sign operator A | B | C@2 Reduces interactions in bar effects
Dash operator A1-A10 Specifies sequentially numbered variables
Colon operator A: Specifies variables that have a common prefix
Double dash operator A- -C Specifies sequential variables in data set order

Bar and At Sign Operators
You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:

scalemodel A B C A*B A*C B*C A*B*C;

scalemodel A|B|C;

When you use the bar (|), the right and left sides become effects, and the cross of them becomes an effect.
Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 from Searle
(1971, p. 390).

• Multiple bars are evaluated from left to right. For example, A | B | C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C

• Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

• Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

• Effects are discarded if a variable occurs on both the crossed and nested parts of an effect. For example,
A(B) | B(D E) generates A*B(B D E), but this effect is eliminated immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an at sign (@), at the end of the bar effect. For example,
the following specification selects only those effects that contain two or fewer variables:

scalemodel A|B|C@2;
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The preceding example is equivalent to the following SCALEMODEL statement:

scalemodel A B C A*B A*C B*C;

More examples of using the bar and at sign operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

NOTE: The preceding examples assume the following CLASS statement specification:

class A B C D;

Colon, Dash, and Double Dash Operators
You can simplify the specification of a large model when some of your variables have a common prefix by
using the colon (:) operator and the dash (-) operator. The colon operator selects all variables that have a
particular prefix, and the dash operator enables you to list variables that are numbered sequentially. For
example, if your data set contains the variables X1 through X9, the following SCALEMODEL statements
are equivalent:

scalemodel X1 X2 X3 X4 X5 X6 X7 X8 X9;

scalemodel X1-X9;

scalemodel X:;

If your data set contains only the three covariates X1, X2, and X9, then the colon operator selects all three
variables:

scalemodel X:;

However, the following specification returns an error because X3 through X8 are not in the data set:

scalemodel X1-X9;

The double dash (- -) operator enables you to select variables that are stored sequentially in the SAS data
set, whether or not they have a common prefix. You can use the CONTENTS procedure (see Base SAS
Procedures Guide) to determine your variable ordering. For example, if you replace the dash in the preceding
SCALEMODEL statement with a double dash, as follows, then all three variables are selected:

scalemodel X1--X9;

If your data set contains the variables A, B, and C, then you can use the double dash operator to select these
variables by specifying the following:

scalemodel A--C;
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GLM Parameterization of Classification Variables and Effects

Table 9.9 shows the types of effects that are available in the HPSEVERITY procedure; they are discussed
in more detail in the following sections. Let A, B, and C represent classification variables, and let X and Z
represent continuous variables.

Table 9.9 Available Types of Effects

Effect Example Description

Singleton continuous X Z Continuous variables
Polynomial continuous X*Z Interaction of continuous variables
Main A B CLASS variables
Interaction A*B Crossing of CLASS variables
Nested A(B) Main effect A nested within CLASS effect B
Continuous-by-class X*A Crossing of continuous and CLASS variables
Continuous-nesting-class X(A) Continuous variable X nested within CLASS variable A
General X*Z*A(B) Combinations of different types of effects

Continuous Effects
Continuous variables or polynomial terms that involve them can be included in the model as continuous
effects. An effect that contains a single continuous variable is referred to as a singleton continuous effect, and
an effect that contains an interaction of only continuous variables is referred to as a polynomial continuous
effect. The actual values of such terms are included as columns of the relevant model matrices. You can
use the bar operator along with a continuous variable to generate polynomial effects. For example, X | X | X
expands to X X*X X*X*X, which is a cubic model.

Main Effects
If a classification variable has m levels, the GLM parameterization generates m columns for its main effect in
the model matrix. Each column is an indicator variable for a given level. The order of the columns is the sort
order of the values of their levels and can be controlled by the ORDER= option in the CLASS statement.

Table 9.10 is an example where ˇ0 denotes the intercept and A and B are classification variables that have
two and three levels, respectively.

Table 9.10 Example of Main Effects

Data I A B

A B ˇ0 A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

There are usually more columns for these effects than there are degrees of freedom to estimate them. In other
words, the GLM parameterization of main effects is singular.
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Interaction Effects
Often a regression model includes interaction (crossed) effects to account for how the effect of a variable
changes along with the values of other variables. In an interaction, the terms are first reordered to correspond
to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if A precedes B in the CLASS
statement. Then, the GLM parameterization generates columns for all combinations of levels that occur in
the data. The order of the columns is such that the rightmost variables in the interaction change faster than
the leftmost variables, as illustrated in Table 9.11.

Table 9.11 Example of Interaction Effects

Data I A B A*B

A B ˇ0 A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In the matrix in Table 9.11, main-effects columns are not linearly independent of crossed-effects columns. In
fact, the column space for the crossed effects contains the space of the main effect.

When your regression model contains many interaction effects, you might be able to code them more
parsimoniously by using the bar operator ( | ). The bar operator generates all possible interaction effects. For
example, A | B | C expands to A B A*B C A*C B*C A*B*C. To eliminate higher-order interaction effects, use
the at sign (@) in conjunction with the bar operator. For example, A | B | C | D@2 expands to A B A*B C A*C
B*C D A*D B*D C*D.

Nested Effects
Nested effects are generated in the same manner as crossed effects. Hence, the design columns that are
generated by the following two statements are the same (but the ordering of the columns is different):

scalemodel A B(A);

scalemodel A A*B;

The nesting operator in PROC HPSEVERITY is more of a notational convenience than an operation that is
distinct from crossing. Nested effects are usually characterized by the property that the nested variables do
not appear as main effects. The order of the variables within nesting parentheses is made to correspond to the
order of these variables in the CLASS statement. The order of the columns is such that variables outside the
parentheses index faster than those inside the parentheses, and the rightmost nested variables index faster
than the leftmost variables, as illustrated in Table 9.12.

Table 9.12 Example of Nested Effects

Data I A B(A)

A B ˇ0 A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
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Table 9.12 continued

Data I A B(A)

2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Continuous-Nesting-Class Effects
When a continuous variable nests or crosses with a classification variable, the design columns are constructed
by multiplying the continuous values into the design columns for the classification effect, as illustrated in
Table 9.13.

Table 9.13 Example of Continuous-Nesting-Class Effects

Data I A X(A)

X A ˇ0 A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

Continuous-by-Class Effects
Continuous-by-class effects generate the same design columns as continuous-nesting-class effects. Table 9.14
shows the construction of the X*A effect. The two columns for this effect are the same as the columns for the
X(A) effect in Table 9.13.

Table 9.14 Example of Continuous-by-Class Effects

Data I X A X*A

X A ˇ0 X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

General Effects
An example that combines all the effects is X1*X2*A*B*C(D E). The continuous list comes first, followed by
the crossed list, followed by the nested list in parentheses. PROC HPSEVERITY might rename effects to
correspond to ordering rules. For example, B*A(E D) might be renamed A*B(D E) to satisfy the following:

• Classification variables that occur outside parentheses (crossed effects) are sorted in the order in which
they appear in the CLASS statement.
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• Variables within parentheses (nested effects) are sorted in the order in which they appear in the CLASS
statement.

The sequencing of the parameters that are generated by an effect is determined by the variables whose levels
are indexed faster:

• Variables in the crossed list index faster than variables in the nested list.

• Within a crossed or nested list, variables to the right index faster than variables to the left.

For example, suppose a model includes four effects—A, B, C, and D—each of which has two levels, 1 and 2.
Assume the CLASS statement is

class A B C D;

Then the order of the parameters for the effect B*A(C D), which is renamed
A*B(C D), is

A1B1C1D1 ! A1B2C1D1 ! A2B1C1D1 ! A2B2C1D1 !

A1B1C1D2 ! A1B2C1D2 ! A2B1C1D2 ! A2B2C1D2 !

A1B1C2D1 ! A1B2C2D1 ! A2B1C2D1 ! A2B2C2D1 !

A1B1C2D2 ! A1B2C2D2 ! A2B1C2D2 ! A2B2C2D2

Note that first the crossed effects B and A are sorted in the order in which they appear in the CLASS
statement so that A precedes B in the parameter list. Then, for each combination of the nested effects in turn,
combinations of A and B appear. The B effect changes fastest because it is rightmost in the cross list. Then A
changes next fastest, and D changes next fastest after that. The C effect changes most slowly because it is
leftmost in the nested list.

Reference Parameterization

Classification variables can be represented in the reference parameterization. Consider the classification
variable A that has four values, 1, 2, 5, and 7. The reference parameterization generates three columns (one
less than the number of variable levels). The columns indicate group membership of the nonreference levels.
For the reference level, the three dummy variables have a value of 0. If the reference level is 7 (REF=’7’), the
design columns for variable A are as shown in Table 9.15.

Table 9.15 Reference Coding

Design Matrix
A A1 A2 A5

1 1 0 0
2 0 1 0
5 0 0 1
7 0 0 0

Parameter estimates of CLASS main effects that use the reference coding scheme estimate the difference in
the effect of each nonreference level compared to the effect of the reference level.
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Empirical Distribution Function Estimation Methods
The empirical distribution function (EDF) is a nonparametric estimate of the cumulative distribution function
(CDF) of the distribution. PROC HPSEVERITY computes EDF estimates for two purposes: to send the
estimates to a distribution’s PARMINIT subroutine in order to initialize the distribution parameters, and to
compute the EDF-based statistics of fit.

To reduce the time that it takes to compute the EDF estimates, you can use the INITSAMPLE option to
specify that only a fraction of the input data be used. If you do not specify the INITSAMPLE option and
the data set has more than 10,000 valid observations, then a uniform random sample of at most 10,000
observations is used for EDF estimation.

In the distributed mode of execution, in which data are distributed across the grid nodes, the EDF estimates
are computed on each node by using the portion of the input data that is located on that node. These local
EDF estimates are an approximation of the global EDF estimates, which would been computed by using the
entire input data set. PROC HPSEVERITY does not compute global EDF estimates. Let X denote a quantity
that depends on the EDF estimates. X can be either an EDF-based initial value of a distribution parameter or
an EDF-based statistic of fit. PROC HPSEVERITY estimates X as follows: First, each grid node k computes
an estimate Xk by using the local EDF estimates that are computed on that node. Then, the estimate OX of X
is computed as an average of all the Xk values; that is, OX D

PK
iD1Xk , where K denotes the total number of

nodes where the data reside.

This section describes the methods that are used for computing EDF estimates.

Notation

Let there be a set of N observations, each containing a quintuplet of values .yi ; t li ; t
r
i ; c

r
i ; c

l
i /; i D 1; : : : ; N ,

where yi is the value of the response variable, t li is the value of the left-truncation threshold, tri is the value
of the right-truncation threshold, cri is the value of the right-censoring limit, and cli is the value of the
left-censoring limit.

If an observation is not left-truncated, then t li D � l , where � l is the smallest value in the support of the
distribution; so F.t li / D 0. If an observation is not right-truncated, then tri D �h, where �h is the largest
value in the support of the distribution; so F.tri / D 1. If an observation is not right-censored, then cri D �

l ;
so F.cri / D 0. If an observation is not left-censored, then cli D �h; so F.cli / D 1.

Let wi denote the weight associated with ith observation. If you specify the WEIGHT statement, then wi is
the normalized value of the weight variable; otherwise, it is set to 1. The weights are normalized such that
they sum up to N.

An indicator function I Œe� takes a value of 1 or 0 if the expression e is true or false, respectively.

Estimation Methods

If the response variable is subject to both left-censoring and right-censoring effects and if you explicitly
specify the EMPIRICALCDF=TURNBULL option, then PROC HPSEVERITY uses the Turnbull’s method.
This section describes methods other than Turnbull’s method. For Turnbull’s method, see the next section
“Turnbull’s EDF Estimation Method” on page 301.

The method descriptions assume that all observations are either uncensored or right-censored; that is, each
observation is of the form .yi ; t

l
i ; t

r
i ; �

l ; �h/ or .yi ; t li ; t
r
i ; c

r
i ; �h/.
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If all observations are either uncensored or left-censored, then each observation is of the form
.yi ; t

l
i ; t

r
i ; �l ; c

l
i /. It is converted to an observation .�yi ;�tri ;�t

l
i ;�c

l
i ; �h/; that is, the signs of all the

response variable values are reversed, the new left-truncation threshold is equal to the negative of the original
right-truncation threshold, the new right-truncation threshold is equal to the negative of the original left-
truncation threshold, and the negative of the original left-censoring limit becomes the new right-censoring
limit. With this transformation, each observation is either uncensored or right-censored. The methods
described for handling uncensored or right-censored data are now applicable. After the EDF estimates are
computed, the observations are transformed back to the original form and EDF estimates are adjusted such
Fn.yi / D 1 � Fn.�yi�/, where Fn.�yi�/ denotes the EDF estimate of the value slightly less than the
transformed value �yi .

Further, a set of uncensored or right-censored observations can be converted to a set of observations of
the form .yi ; t

l
i ; t

r
i ; ıi /, where ıi is the indicator of right-censoring. ıi D 0 indicates a right-censored

observation, in which case yi is assumed to record the right-censoring limit cri . ıi D 1 indicates an
uncensored observation, and yi records the exact observed value. In other words, ıi D I ŒY � C r � and
yi D min.yi ; cri /.

Given this notation, the EDF is estimated as

Fn.y/ D

8<:
0 if y < y.1/
OFn.y

.k// if y.k/ � y < y.kC1/; k D 1; : : : ; N � 1
OFn.y

.N// if y.N/ � y

where y.k/ denotes the kth order statistic of the set fyig and OFn.y.k// is the estimate computed at that
value. The definition of OFn depends on the estimation method. You can specify a particular method or let
PROC HPSEVERITY choose an appropriate method by using the EMPIRICALCDF= option in the PROC
HPSEVERITY statement. Each method computes OFn as follows:

NOTURNBULL This is the default method. First, censored observations, if any, are processed as
follows:

• An observation that is left-censored but not right-censored is converted to an
uncensored observation .yui ; t

l
i ; t

r
i ; �

l ; �h/, where yui D c
l
i =2.

• An observation that is both left-censored and right-censored is converted to an
uncensored observation .yui ; t

l
i ; t

r
i ; �

l ; �h/, where yui D .c
r
i C c

l
i /=2.

• An observation that is right-censored but not left-censored is left unchanged.

If the processed set of observations contains any truncated or right-censored observa-
tions, the KAPLANMEIER method is used. Otherwise, the STANDARD method is
used.

The observations are modified only for the purpose of computing the EDF estimates.
The original censoring information is used by the parameter estimation process.

STANDARD This method is the standard way of computing EDF. The EDF estimate at observation
i is computed as follows:

OFn.yi / D
1

N

NX
jD1

wj � I Œyj � yi �
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If you do not specify any censoring or truncation information, then this method is
chosen. If you explicitly specify this method, then PROC HPSEVERITY ignores any
censoring and truncation information that you specify in the LOSS statement.

The standard error of OFn.yi / is computed by using the normal approximation method:

O�n.yi / D

q
OFn.yi /.1 � OFn.yi //=N

KAPLANMEIER The Kaplan-Meier (KM) estimator, also known as the product-limit estimator, was first
introduced by Kaplan and Meier (1958) for censored data. Lynden-Bell (1971) derived
a similar estimator for left-truncated data. PROC HPSEVERITY uses the definition
that combines both censoring and truncation information (Klein and Moeschberger
1997; Lai and Ying 1991).

The EDF estimate at observation i is computed as

OFn.yi / D 1 �
Y
��yi

�
1 �

n.�/

Rn.�/

�
where n.�/ and Rn.�/ are defined as follows:

• n.�/ D
PN
kD1wk � I Œyk D � and � � tr

k
and ık D 1�, which is the number

of uncensored observations (ık D 1) for which the response variable value is
equal to � and � is observable according to the right-truncation threshold of that
observation (� � tr

k
).

• Rn.�/ D
PN
kD1wk � I Œyk � � > t

l
k
�, which is the size (cardinality) of the risk

set at � . The term risk set has its origins in survival analysis; it contains the
events that are at risk of failure at a given time, � . In other words, it contains the
events that have survived up to time � and might fail at or after � . For PROC
HPSEVERITY, time is equivalent to the magnitude of the event and failure is
equivalent to an uncensored and observable event, where observable means it
satisfies the truncation thresholds.

This method is chosen when you specify at least one form of censoring or truncation.

The standard error of OFn.yi / is computed by using Greenwood’s formula (Greenwood
1926):

O�n.yi / D

vuut.1 � OFn.yi //2 �
X
��yi

�
n.�/

Rn.�/.Rn.�/ � n.�//

�

MODIFIEDKM The product-limit estimator used by the KAPLANMEIER method does not work well
if the risk set size becomes very small. For right-censored data, the size can become
small towards the right tail. For left-truncated data, the size can become small at the
left tail and can remain so for the entire range of data. This was demonstrated by
Lai and Ying (1991). They proposed a modification to the estimator that ignores the
effects due to small risk set sizes.

The EDF estimate at observation i is computed as

OFn.yi / D 1 �
Y
��yi

�
1 �

n.�/

Rn.�/
� I ŒRn.�/ � cN

˛�

�
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where the definitions of n.�/ and Rn.�/ are identical to those used for the KAPLAN-
MEIER method described previously.

You can specify the values of c and ˛ by using the C= and ALPHA= options. If you
do not specify a value for c, the default value used is c = 1. If you do not specify a
value for ˛, the default value used is ˛ D 0:5.

As an alternative, you can also specify an absolute lower bound, say L, on the risk
set size by using the RSLB= option, in which case I ŒRn.�/ � cN ˛� is replaced by
I ŒRn.�/ � L� in the definition.

The standard error of OFn.yi / is computed by using Greenwood’s formula (Greenwood
1926):

O�n.yi / D

vuut.1 � OFn.yi //2 �
X
��yi

�
n.�/

Rn.�/.Rn.�/ � n.�//
� I ŒRn.�/ � cN ˛�

�

Turnbull’s EDF Estimation Method

If the response variable is subject to both left-censoring and right-censoring effects and if you explicitly
specify the EMPIRICALCDF=TURNBULL option, then the HPSEVERITY procedure uses a method
proposed by Turnbull (1976) to compute the nonparametric estimates of the cumulative distribution function.
The original Turnbull’s method is modified using the suggestions made by Frydman (1994) when truncation
effects are present.

Let the input data consist of N observations in the form of quintuplets of values .yi ; t li ; t
r
i ; c

r
i ; c

l
i /; i D

1; : : : ; N with notation described in the section “Notation” on page 298. For each observation, let Ai D
.cri ; c

l
i � be the censoring interval; that is, the response variable value is known to lie in the interval Ai , but

the exact value is not known. If an observation is uncensored, then Ai D .yi � �; yi � for any arbitrarily small
value of � > 0. If an observation is censored, then the value yi is ignored. Similarly, for each observation,
let Bi D .t li ; t

r
i � be the truncation interval; that is, the observation is drawn from a truncated (conditional)

distribution F.y;Bi / D P.Y � yjY 2 Bi /.

Two sets, L and R, are formed using Ai and Bi as follows:

L D fcri ; 1 � i � N g [ ft
r
i ; 1 � i � N g

R D fcli ; 1 � i � N g [ ft
l
i ; 1 � i � N g

The sets L and R represent the left endpoints and right endpoints, respectively. A set of disjoint intervals
Cj D Œqj ; pj �, 1 � j � M is formed such that qj 2 L and pj 2 R and qj � pj and pj < qjC1. The
value of M is dependent on the nature of censoring and truncation intervals in the input data. Turnbull (1976)
showed that the maximum likelihood estimate (MLE) of the EDF can increase only inside intervals Cj . In
other words, the MLE estimate is constant in the interval .pj ; qjC1/. The likelihood is independent of the
behavior of Fn inside any of the intervals Cj . Let sj denote the increase in Fn inside an interval Cj . Then,
the EDF estimate is as follows:

Fn.y/ D

8<:
0 if y < q1Pj

kD1
sk if pj < y < qjC1; 1 � j �M � 1

1 if y > pM



302 F Chapter 9: The HPSEVERITY Procedure

PROC HPSEVERITY computes the estimates Fn.pjC/ D Fn.qjC1�/ D
Pj

kD1
sk at points pj and qjC1

and computes Fn.q1�/ D 0 at point q1, where Fn.xC/ denotes the limiting estimate at a point that is
infinitesimally larger than x when approaching x from values larger than x and where Fn.x�/ denotes the
limiting estimate at a point that is infinitesimally smaller than x when approaching x from values smaller than
x.

PROC HPSEVERITY uses the expectation-maximization (EM) algorithm proposed by Turnbull (1976), who
referred to the algorithm as the self-consistency algorithm. By default, the algorithm runs until one of the
following criteria is met:

• Relative-error criterion: The maximum relative error between the two consecutive estimates of sj falls
below a threshold �. If l indicates an index of the current iteration, then this can be formally stated as

arg max
1�j�M

(
jslj � s

l�1
j j

sl�1j

)
� �

You can control the value of � by specifying the EPS= suboption of the EDF=TURNBULL option in
the PROC HPSEVERITY statement. The default value is 1.0E–8.

• Maximum-iteration criterion: The number of iterations exceeds an upper limit that you specify for the
MAXITER= suboption of the EDF=TURNBULL option in the PROC HPSEVERITY statement. The
default number of maximum iterations is 500.

The self-consistent estimates obtained in this manner might not be maximum likelihood estimates. Gentleman
and Geyer (1994) suggested the use of the Kuhn-Tucker conditions for the maximum likelihood problem to
ensure that the estimates are MLE. If you specify the ENSUREMLE suboption of the EDF=TURNBULL
option in the PROC HPSEVERITY statement, then PROC HPSEVERITY computes the Kuhn-Tucker
conditions at the end of each iteration to determine whether the estimates {sj } are MLE. If you do not
specify any truncation effects, then the Kuhn-Tucker conditions derived by Gentleman and Geyer (1994)
are used. If you specify any truncation effects, then PROC HPSEVERITY uses modified Kuhn-Tucker
conditions that account for the truncation effects. An integral part of checking the conditions is to determine
whether an estimate sj is zero or whether an estimate of the Lagrange multiplier or the reduced gradient
associated with the estimate sj is zero. PROC HPSEVERITY declares these values to be zero if they are
less than or equal to a threshold ı. You can control the value of ı by specifying the ZEROPROB= suboption
of the EDF=TURNBULL option in the PROC HPSEVERITY statement. The default value is 1.0E–8. The
algorithm continues until the Kuhn-Tucker conditions are satisfied or the number of iterations exceeds the
upper limit. The relative-error criterion stated previously is not used when you specify the ENSUREMLE
option.

The standard errors for Turnbull’s EDF estimates are computed by using the asymptotic theory of the
maximum likelihood estimators (MLE), even though the final estimates might not be MLE. Turnbull’s
estimator essentially attempts to maximize the likelihood L, which depends on the parameters sj (j D
1 : : :M ). Let sss D fsj g denote the set of these parameters. If G.sss/ D r2.� log.L.sss/// denotes the
Hessian matrix of the negative of log likelihood, then the variance-covariance matrix of sss is estimated as
OC.sss/ D G�1.sss/. Given this matrix, the standard error of Fn.y/ is computed as

�n.y/ D

vuuut jX
kD1

0@ OCkk C 2 � k�1X
lD1

OCkl

1A, if pj < y < qjC1; 1 � j �M � 1

The standard error is undefined outside of these intervals.
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EDF Estimates and Truncation

If you specify truncation, then the estimate OFn.y/ that is computed by any method other than the STANDARD
method is a conditional estimate. In other words, OFn.y/ D Pr.Y � yj�G < Y � �H /, where G and
H denote the (unknown) distribution functions of the left-truncation threshold variable T l and the right-
truncation threshold variable T r , respectively, �G denotes the smallest left-truncation threshold with a nonzero
cumulative probability, and �H denotes the largest right-truncation threshold with a nonzero cumulative
probability. Formally, �G D inffs W G.s/ > 0g and �H D supfs W H.s/ > 0g. For computational purposes,
PROC HPSEVERITY estimates �G and �H by t lmin and trmax, respectively, defined as

t lmin D minft lk W 1 � k � N g

trmax D maxftrk W 1 � k � N g

These estimates of t lmin and trmax are used to compute the conditional estimates of the CDF as described in the
section “Truncation and Conditional CDF Estimates” on page 279.

If you specify left-truncation with the probability of observability p, then PROC HPSEVERITY uses the
additional information provided by p to compute an estimate of the EDF that is not conditional on the
left-truncation information. In particular, for each left-truncated observation i with response variable value
yi and truncation threshold t li , an observation j is added with weight wj D .1 � p/=p and yj D t lj . Each
added observation is assumed to be uncensored and untruncated. Then, your specified EDF method is used
by assuming no left-truncation. The EDF estimate that is obtained using this method is not conditional on
the left-truncation information. For the KAPLANMEIER and MODIFIEDKM methods with uncensored
or right-censored data, definitions of n.�/ and Rn.�/ are modified to account for the added observations.
If N a denotes the total number of observations including the added observations, then n.�/ is defined as
n.�/ D

PNa

kD1wkI Œyk D � and � � tr
k

and ık D 1�, andRn.�/ is defined asRn.�/ D
PNa

kD1wkI Œyk � ��.
In the definition of Rn.�/, the left-truncation information is not used, because it was used along with p to
add the observations.

If the original data are a combination of left- and right-censored data and if you specify the EMPIRI-
CALCDF=TURNBULL option, then Turnbull’s method is applied to the appended set that contains no
left-truncated observations.

Supplying EDF Estimates to Functions and Subroutines

The parameter initialization subroutines in distribution models and some predefined utility functions require
EDF estimates. For more information, see the sections “Defining a Severity Distribution Model with the
FCMP Procedure” on page 311 and “Predefined Utility Functions” on page 323.

PROC HPSEVERITY supplies the EDF estimates to these subroutines and functions by using two arrays,
x and F, the dimension of each array, and a type of the EDF estimates. The type identifies how the EDF
estimates are computed and stored. They are as follows:

Type 1 specifies that EDF estimates are computed using the STANDARD method; that is, the data that
are used for estimation are neither censored nor truncated.

Type 2 specifies that EDF estimates are computed using either the KAPLANMEIER or the MODI-
FIEDKM method; that is, the data that are used for estimation are subject to truncation and one
type of censoring (left or right, but not both).

Type 3 specifies that EDF estimates are computed using the TURNBULL method; that is, the data that
are used for estimation are subject to both left- and right-censoring. The data might or might not
be truncated.
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For Types 1 and 2, the EDF estimates are stored in arrays x and F of dimension N such that the following
holds:

Fn.y/ D

8<:
0 if y < xŒ1�
F Œk� if xŒk� � y < xŒk C 1�; k D 1; : : : ; N � 1
F ŒN � if xŒN � � y

where Œk� denotes kth element of the array ([1] denotes the first element of the array).

For Type 3, the EDF estimates are stored in arrays x and F of dimension N such that the following holds:

Fn.y/ D

8̂̂<̂
:̂
0 if y < xŒ1�
undefined if xŒ2k � 1� � y < xŒ2k�; k D 1; : : : ; .N � 1/=2
F Œ2k� D F Œ2k C 1� if xŒ2k� � y < xŒ2k C 1�; k D 1; : : : ; .N � 1/=2
F ŒN � if xŒN � � y

Although the behavior of EDF is theoretically undefined for the interval ŒxŒ2k� 1�; xŒ2k�/, for computational
purposes, all predefined functions and subroutines assume that the EDF increases linearly from F Œ2k � 1�

to F Œ2k� in that interval if xŒ2k � 1� < xŒ2k�. If xŒ2k � 1� D xŒ2k�, which can happen when the EDF
is estimated from a combination of uncensored and interval-censored data, the predefined functions and
subroutines assume that Fn.xŒ2k � 1�/ D Fn.xŒ2k�/ D F Œ2k�.

Statistics of Fit
PROC HPSEVERITY computes and reports various statistics of fit to indicate how well the estimated model
fits the data. The statistics belong to two categories: likelihood-based statistics and EDF-based statistics.
Neg2LogLike, AIC, AICC, and BIC are likelihood-based statistics, and KS, AD, and CvM are EDF-based
statistics.

In the distributed mode of execution, in which data are distributed across the grid nodes, the EDF estimates
are computed by using the local data. The EDF-based statistics are computed by using these local EDF
estimates. The reported value of each EDF-based statistic is an average of the values of the statistic that
are computed by all the grid nodes where the data reside. Also, for large data sets, in both single-machine
and distributed modes of execution, the EDF estimates are computed by using a fraction of the input data
that is governed by either the INITSAMPLE option or the default sample size. Because of this nature of
computing the EDF estimates, the EDF-based statistics of fit are an approximation of the values that would
have been computed if the entire input data set were used for computing the EDF estimates. So the values
that are reported for EDF-based statistics should be used only for comparing different models. The reported
values should not be interpreted as true estimates of the corresponding statistics.

The likelihood-based statistics are reported for the entire input data in both single-machine and distributed
modes of execution.

The following subsections provide definitions of each category of statistics.

Likelihood-Based Statistics of Fit

Let yi ; i D 1; : : : ; N , denote the response variable values. Let L be the likelihood as defined in the section
“Likelihood Function” on page 280. Let p denote the number of model parameters that are estimated. Note
that p D pd C .k � kr/, where pd is the number of distribution parameters, k is the number of all regression
parameters, and kr is the number of regression parameters that are found to be linearly dependent (redundant)
on other regression parameters. Given this notation, the likelihood-based statistics are defined as follows:
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Neg2LogLike The log likelihood is reported as

Neg2LogLike D �2 log.L/

The multiplying factor �2 makes it easy to compare it to the other likelihood-based
statistics. A model that has a smaller value of Neg2LogLike is deemed better.

AIC Akaike’s information criterion (AIC) is defined as

AIC D �2 log.L/C 2p

A model that has a smaller AIC value is deemed better.

AICC The corrected Akaike’s information criterion (AICC) is defined as

AICC D �2 log.L/C
2Np

N � p � 1

A model that has a smaller AICC value is deemed better. It corrects the finite-sample bias
that AIC has when N is small compared to p. AICC is related to AIC as

AICC D AICC
2p.p C 1/

N � p � 1

As N becomes large compared to p, AICC converges to AIC. AICC is usually recom-
mended over AIC as a model selection criterion.

BIC The Schwarz Bayesian information criterion (BIC) is defined as

BIC D �2 log.L/C p log.N /

A model that has a smaller BIC value is deemed better.

EDF-Based Statistics

This class of statistics is based on the difference between the estimate of the cumulative distribution function
(CDF) and the estimate of the empirical distribution function (EDF). A model that has a smaller value of the
chosen EDF-based statistic is deemed better.

Let yi ; i D 1; : : : ; N denote the sample of N values of the response variable. Let ri D
PN
jD1 I Œyj � yi �

denote the number of observations with a value less than or equal to yi , where I is an indicator function. Let
Fn.yi / denote the EDF estimate that is computed by using the method that you specify in the EMPIRICAL-
CDF= option. Let Zi D OF .yi / denote the estimate of the CDF. Let Fn.Zi / denote the EDF estimate of Zi
values that are computed using the same method that is used to compute the EDF of yi values. Using the
probability integral transformation, if F.y/ is the true distribution of the random variable Y, then the random
variable Z D F.y/ is uniformly distributed between 0 and 1 (D’Agostino and Stephens 1986, Ch. 4). Thus,
comparing Fn.yi / with OF .yi / is equivalent to comparing Fn.Zi / with OF .Zi / D Zi (uniform distribution).

Note the following two points regarding which CDF estimates are used for computing the test statistics:

• If you specify regression effects, then the CDF estimates Zi that are used for computing the EDF test
statistics are from a mixture distribution. See the section “CDF and PDF Estimates with Regression
Effects” on page 287 for more information.
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• If the EDF estimates are conditional because of the truncation information, then each unconditional
estimateZi is converted to a conditional estimate using the method described in the section “Truncation
and Conditional CDF Estimates” on page 279.

In the following, it is assumed that Zi denotes an appropriate estimate of the CDF if you specify any
truncation or regression effects. Given this, the EDF-based statistics of fit are defined as follows:

KS The Kolmogorov-Smirnov (KS) statistic computes the largest vertical distance between the CDF
and the EDF. It is formally defined as follows:

KS D sup
y
jFn.y/ � F.y/j

If the STANDARD method is used to compute the EDF, then the following formula is used:

DC D maxi .
ri

N
�Zi /

D� D maxi .Zi �
ri�1

N
/

KS D
p
N max.DC;D�/C

0:19
p
N

Note that r0 is assumed to be 0.

If the method used to compute the EDF is any method other than the STANDARD method, then
the following formula is used:

DC D maxi .Fn.Zi / �Zi /; if Fn.Zi / � Zi
D� D maxi .Zi � Fn.Zi //; if Fn.Zi / < Zi

KS D
p
N max.DC;D�/C

0:19
p
N

AD The Anderson-Darling (AD) statistic is a quadratic EDF statistic that is proportional to the expected
value of the weighted squared difference between the EDF and CDF. It is formally defined as
follows:

AD D N
Z 1
�1

.Fn.y/ � F.y//
2

F.y/.1 � F.y//
dF.y/

If the STANDARD method is used to compute the EDF, then the following formula is used:

AD D �N �
1

N

NX
iD1

Œ.2ri � 1/ log.Zi /C .2N C 1 � 2ri / log.1 �Zi /�

If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:

• If the EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM methods,
then EDF is a step function such that the estimate Fn.z/ is a constant equal to Fn.Zi�1/ in
interval ŒZi�1; Zi �. If the EDF estimates are computed using the TURNBULL method, then
there are two types of intervals: one in which the EDF curve is constant and the other in
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which the EDF curve is theoretically undefined. For computational purposes, it is assumed
that the EDF curve is linear for the latter type of the interval. For each method, the EDF
estimate Fn.y/ at y can be written as

Fn.z/ D Fn.Zi�1/C Si .z �Zi�1/; for z 2 ŒZi�1; Zi �

where Si is the slope of the line defined as

Si D
Fn.Zi / � Fn.Zi�1/

Zi �Zi�1

For the KAPLANMEIER or MODIFIEDKM method, Si D 0 in each interval.

• Using the probability integral transform z D F.y/, the formula simplifies to

AD D N
Z 1
�1

.Fn.z/ � z/
2

z.1 � z/
dz

The computation formula can then be derived from the following approximation:

AD D N
KC1X
iD1

Z Zi

Zi�1

.Fn.z/ � z/
2

z.1 � z/
dz

D N

KC1X
iD1

Z Zi

Zi�1

.Fn.Zi�1/C Si .z �Zi�1/ � z/
2

z.1 � z/
dz

D N

KC1X
iD1

Z Zi

Zi�1

.Pi �Qiz/
2

z.1 � z/
dz

where Pi D Fn.Zi�1/ � SiZi�1, Qi D 1 � Si , and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K D 2k for some k.

Assuming Z0 D 0, ZKC1 D 1, Fn.0/ D 0, and Fn.ZK/ D 1 yields the following computation
formula:

AD D�N.Z1 C log.1 �Z1/C log.ZK/C .1 �ZK//

CN

KX
iD2

�
P 2i Ai � .Qi � Pi /

2Bi �Q
2
i Ci

�
where Ai D log.Zi / � log.Zi�1/, Bi D log.1 �Zi / � log.1 �Zi�1/, and Ci D Zi �Zi�1.

If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
Pi D Fn.Zi�1/ and Qi D 1, which simplifies the formula as

AD D�N.1C log.1 �Z1/C log.ZK//

CN

KX
iD2

�
Fn.Zi�1/

2Ai � .1 � Fn.Zi�1//
2Bi

�
CvM The Cramér-von Mises (CvM) statistic is a quadratic EDF statistic that is proportional to the

expected value of the squared difference between the EDF and CDF. It is formally defined as
follows:

CvM D N
Z 1
�1

.Fn.y/ � F.y//
2dF.y/
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If the STANDARD method is used to compute the EDF, then the following formula is used:

CvM D
1

12N
C

NX
iD1

�
Zi �

.2ri � 1/

2N

�2
If the method used to compute the EDF is any method other than the STANDARD method, then
the statistic can be computed by using the following two pieces of information:

• As described previously for the AD statistic, the EDF estimates are assumed to be piecewise
linear such that the estimate Fn.y/ at y is

Fn.z/ D Fn.Zi�1/C Si .z �Zi�1/; for z 2 ŒZi�1; Zi �

where Si is the slope of the line defined as

Si D
Fn.Zi / � Fn.Zi�1/

Zi �Zi�1

For the KAPLANMEIER or MODIFIEDKM method, Si D 0 in each interval.

• Using the probability integral transform z D F.y/, the formula simplifies to:

CvM D N
Z 1
�1

.Fn.z/ � z/
2dz

The computation formula can then be derived from the following approximation:

CvM D N
KC1X
iD1

Z Zi

Zi�1

.Fn.z/ � z/
2dz

D N

KC1X
iD1

Z Zi

Zi�1

.Fn.Zi�1/C Si .z �Zi�1/ � z/
2dz

D N

KC1X
iD1

Z Zi

Zi�1

.Pi �Qiz/
2dz

where Pi D Fn.Zi�1/ � SiZi�1, Qi D 1 � Si , and K is the number of points at which the EDF
estimate are computed. For the TURNBULL method, K D 2k for some k.

Assuming Z0 D 0, ZKC1 D 1, and Fn.0/ D 0 yields the following computation formula:

CvM D N
Z31
3
CN

KC1X
iD2

"
P 2i Ai � PiQiBi �

Q2i
3
Ci

#

where Ai D Zi �Zi�1, Bi D Z2i �Z
2
i�1, and Ci D Z3i �Z

3
i�1.

If EDF estimates are computed using the KAPLANMEIER or MODIFIEDKM method, then
Pi D Fn.Zi�1/ and Qi D 1, which simplifies the formula as

CvM D
N

3
CN

KC1X
iD2

�
Fn.Zi�1/

2.Zi �Zi�1/ � Fn.Zi�1/.Z
2
i �Z

2
i�1/

�
which is similar to the formula proposed by Koziol and Green (1976).
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Distributed and Multithreaded Computation
PROC HPSEVERITY makes an attempt to use all the computational resources that you specify in the
PERFORMANCE statement in order to complete the assigned tasks as fast as possible. This section describes
the distributed and multithreading computing methods that PROC HPSEVERITY uses.

Distributed Computing

Distributed computing refers to the organization of computation work into multiple tasks that are processed
on different nodes; a node is one of the machines that constitute the grid. The number of nodes that PROC
HPSEVERITY uses is determined by the distributed processing execution mode. If you specify the client-data
(or local-data) mode of execution, then the number of nodes is determined by the NODES= option in the
PERFORMANCE statement. If you are using the alongside-the-database mode of execution, then PROC
HPSEVERITY determines the number of nodes internally by using the information that is associated with
the DATA= data set and the grid information that you specify either in the PERFORMANCE statement or in
the grid environment variables. For more information about distributed processing modes, see the section
“Processing Modes” on page 10.

In the client-data model, PROC HPSEVERITY distributes the input data across the number of nodes that you
specify by sending the first observation to the first node, the second observation to the second node, and so
on.

In the alongside-the-database model, PROC HPSEVERITY uses the existing distributed organization of the
data. You do not need to specify the NODES= option.

The number of nodes that are used for distributed computing is displayed in the “Performance Information”
table, which is part of the default output.

Multithreading

Threading refers to the organization of computational work into multiple tasks (processing units that can be
scheduled by the operating system). A task is associated with a thread. Multithreading refers to the concurrent
execution of threads. When multithreading is possible, you can achieve more substantial performance gains
than you can with sequential (single-threaded) execution.

The number of threads the HPSEVERITY procedure spawns is determined by the number of CPUs on a
machine. You can control the number of CPUs in the following ways:

• You can use the CPUCOUNT= SAS system option to specify the CPU count. For example, if you
specify the following statement, then PROC HPSEVERITY schedules threads as if it were executing
on a system that had four CPUs, regardless of the actual CPU count:

options cpucount=4;

You can use this specification only in single-machine mode, and it does not take effect if the THREADS
system option is turned off.
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The default value of the CPUCOUNT= system option might not equal the number of all the logical
CPU cores available on your machine, such as those available because of hyperthreading. To allow
PROC HPSEVERITY to use all the logical cores in single-machine mode, specify the following
OPTIONS statement:

options cpucount=actual;

• You can specify the NTHREADS= option in the PERFORMANCE statement. This specification
overrides the THREADS and CPUCOUNT= system options. Specify NTHREADS=1 to force single-
threaded execution.

If you do not specify the NTHREADS= option and the THREADS system option is turned on, then
the number of threads that are used in distributed mode is equal to the total number of logical CPU
cores available on each node of the grid, and the number of threads used in single-machine mode is
determined by the CPUCOUNT= system option.

If you do not specify the NTHREADS= option and the THREADS system option is turned off, then
only one thread of execution is used in both single-machine and distributed modes.

The number of threads per machine is displayed in the “Performance Information” table, which is part of the
default output.

Performance improvement is not always guaranteed when you use more threads, for several reasons: the
increased cost of communication and synchronization among threads might offset the reduced cost of
computation, the hyperthreading feature of the processor might not be very efficient for floating-point
computations, and other applications might be running on the machine.

Combining the Power of Distributed and Multithreading Computing

The HPSEVERITY procedure combines the powers of distributed and multithreading paradigms by using a
data-parallel model. In particular, the distributed tasks are defined by dividing the data among multiple nodes,
and within one node, the multithreading tasks are defined by further dividing the local data among the threads.
For example, if the input data set has 10,000 observations and you are running on a grid that has five nodes,
then each node processes 2,000 observations (this assumes that if you specify an alongside-the-database
model, then you have equally and randomly divided the input data among the nodes). Further, if each node
has eight CPUs, then 250 observations are associated with each thread within the node. All computations
that require access to the data are then distributed and multithreaded.

Note that in single-machine mode (see the section “Processing Modes” on page 10), only multithreading is
available.

When you specify more than one candidate distribution model, for some tasks PROC HPSEVERITY exploits
the independence among models by processing multiple models in parallel on a single node such that each
model is assigned to one of the threads executing in parallel. When a thread finishes processing the assigned
model, it starts processing the next unprocessed model, if one exists.

The computations that take advantage of the distributed and multithreaded model include the following:

• Validation and preparation of data: In this stage, the observations in the input data set are validated and
transformed, if necessary. The summary statistics of the data are prepared. Because each observation
is independent, the computations can be distributed among nodes and among threads within nodes
without significant communication overhead.
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• Initialization of distribution parameters: In this stage, the parallelism is achieved by initializing
multiple models in parallel. The only computational step that is not fully parallelized in this release
is the step of computing empirical distribution function (EDF) estimates, which are required when
PROC HPSEVERITY needs to invoke a distribution’s PARMINIT subroutine to initialize distribution
parameters. The EDF estimation step is not amenable to full-fledged parallelism because it requires
sequential access to sorted data, especially when the loss variable is modified by truncation effects.
When the data are distributed across nodes, the EDF computations take place on local data and the
PARMINIT function is invoked on the local data by using the local EDF estimates. The initial values
that are supplied to the nonlinear optimizer are computed by averaging the local estimates of the
distribution parameters that are returned by the PARMINIT functions on each node.

• Initialization of regression parameters (if you specify the SCALEMODEL statement): In this stage, if
you do not specify initial values for the regression parameters by using the INEST= data set or the
INSTORE= item store, then PROC HPSEVERITY initializes those parameters by solving a linear
regression problem log .y/ D ˇ0 C

Pk
iD1 ˇjxj . For more information, see the section “Parameter

Initialization for Regression Models” on page 285. The most computationally intensive step is the
formation of the crossproducts matrix. PROC HPSEVERITY exploits the parallelism by observing
the fact that the contribution to the crossproducts matrix due to one observation is independent from
the contribution due to another observation. Each node computes the contribution of its local data to
each entry of the crossproducts matrix. Within each node, each thread computes the contribution of its
chunk of data to each entry of the crossproducts matrix. On each node, the contributions from all the
threads are added up to form the contribution due to all of the local data. The partial crossproducts
matrices are then gathered from all nodes on a central node, which sums them up to form the final
crossproducts matrix.

• Optimization: In this stage, the nonlinear optimizer iterates over the parameter space in search of the
optimal set of parameters. In each iteration, it evaluates the objective function along with the gradient
and Hessian of the objective function, if needed by the optimization method. Within one iteration,
for the current estimates of the parameters, each observation’s contribution to the objective function,
gradient, and Hessian is independent of another observation. This enables PROC HPSEVERITY to
fully exploit the distributed and multithreaded paradigms to efficiently parallelize each iteration of the
algorithm.

Defining a Severity Distribution Model with the FCMP Procedure
A severity distribution model consists of a set of functions and subroutines that are defined using the FCMP
procedure. The FCMP procedure is part of Base SAS software. Each function or subroutine must be named as
<distribution-name>_<keyword>, where distribution-name is the identifying short name of the distribution
and keyword identifies one of the functions or subroutines. The total length of the name should not exceed
32. Each function or subroutine must have a specific signature, which consists of the number of arguments,
sequence and types of arguments, and return value type. The summary of all the recognized function and
subroutine names and their expected behavior is given in Table 9.16.

Consider the following points when you define a distribution model:

• When you define a function or subroutine requiring parameter arguments, the names and order of those
arguments must be the same. Arguments other than the parameter arguments can have any name, but
they must satisfy the requirements on their type and order.
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• When the HPSEVERITY procedure invokes any function or subroutine, it provides the necessary input
values according to the specified signature, and expects the function or subroutine to prepare the output
and return it according to the specification of the return values in the signature.

• You can use most of the SAS programming statements and SAS functions that you can use in a DATA
step for defining the FCMP functions and subroutines. However, there are a few differences in the
capabilities of the DATA step and the FCMP procedure. To learn more, see the documentation of the
FCMP procedure in the Base SAS Procedures Guide.

• You must specify either the PDF or the LOGPDF function. Similarly, you must specify either the CDF
or the LOGCDF function. All other functions are optional, except when necessary for correct definition
of the distribution. It is strongly recommended that you define the PARMINIT subroutine to provide a
good set of initial values for the parameters. The information provided by PROC HPSEVERITY to the
PARMINIT subroutine enables you to use popular initialization approaches based on the method of
moments and the method of percentile matching, but you can implement any algorithm to initialize the
parameters by using the values of the response variable and the estimate of its empirical distribution
function.

• The LOWERBOUNDS subroutines should be defined if the lower bound on at least one distribution
parameter is different from the default lower bound of 0. If you define a LOWERBOUNDS subroutine
but do not set a lower bound for some parameter inside the subroutine, then that parameter is assumed
to have no lower bound (or a lower bound of �1). Hence, it is recommended that you explicitly return
the lower bound for each parameter when you define the LOWERBOUNDS subroutine.

• The UPPERBOUNDS subroutines should be defined if the upper bound on at least one distribution
parameter is different from the default upper bound of1. If you define an UPPERBOUNDS subroutine
but do not set an upper bound for some parameter inside the subroutine, then that parameter is assumed
to have no upper bound (or a upper bound of1). Hence, it is recommended that you explicitly return
the upper bound for each parameter when you define the UPPERBOUNDS subroutine.

• If you want to use the distribution in a model with regression effects, then make sure that the first
parameter of the distribution is the scale parameter itself or a log-transformed scale parameter. If the
first parameter is a log-transformed scale parameter, then you must define the SCALETRANSFORM
function.

• In general, it is not necessary to define the gradient and Hessian functions, because the HPSEVERITY
procedure uses an internal system to evaluate the required derivatives. The internal system typically
computes the derivatives analytically. But it might not be able to do so if your function definitions use
other functions that it cannot differentiate analytically. In such cases, derivatives are approximated
using a finite difference method and a note is written to the SAS log to indicate the components that are
differentiated using such approximations. PROC HPSEVERITY does reasonably well with these finite
difference approximations. But, if you know of a way to compute the derivatives of such components
analytically, then you should define the gradient and Hessian functions.

In order to use your distribution with PROC HPSEVERITY, you need to record the FCMP library that
contains the functions and subroutines for your distribution and other FCMP libraries that contain FCMP
functions or subroutines used within your distribution’s functions and subroutines. Specify all those libraries
in the CMPLIB= system option by using the OPTIONS global statement. For more information about the
OPTIONS statement, see SAS Statements: Reference. For more information about the CMPLIB= system
option, see SAS System Options: Reference.

Each predefined distribution mentioned in the section “Predefined Distributions” on page 268 has a dis-
tribution model associated with it. The functions and subroutines of all those models are available in the
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Sashelp.Svrtdist library. The order of the parameters in the signatures of the functions and subroutines is
the same as listed in Table 9.2. You do not need to use the CMPLIB= option in order to use the predefined
distributions with PROC HPSEVERITY. However, if you need to use the functions or subroutines of the
predefined distributions in SAS statements other than the PROC HPSEVERITY step (such as in a DATA
step), then specify the Sashelp.Svrtdist library in the CMPLIB= system option by using the OPTIONS global
statement prior to using them.

Table 9.16 shows functions and subroutines that define a distribution model, and subsections after the table
provide more detail. The functions are listed in alphabetical order of the keyword suffix.

Table 9.16 List of Functions and Subroutines That Define a Distribution Model

Name Type Required Expected to Return

dist_CDF Function YES1 Cumulative distribution
function value

dist_CDFGRADIENT Subroutine NO Gradient of the CDF
dist_CDFHESSIAN Subroutine NO Hessian of the CDF
dist_CONSTANTPARM Subroutine NO Constant parameters
dist_DESCRIPTION Function NO Description of the distribution
dist_LOGCDF Function YES1 Log of cumulative distribution

function value
dist_LOGCDFGRADIENT Subroutine NO Gradient of the LOGCDF
dist_LOGCDFHESSIAN Subroutine NO Hessian of the LOGCDF
dist_LOGPDF Function YES2 Log of probability density

function value
dist_LOGPDFGRADIENT Subroutine NO Gradient of the LOGPDF
dist_LOGPDFHESSIAN Subroutine NO Hessian of the LOGPDF
dist_LOGSDF Function NO Log of survival

function value
dist_LOGSDFGRADIENT Subroutine NO Gradient of the LOGSDF
dist_LOGSDFHESSIAN Subroutine NO Hessian of the LOGSDF
dist_LOWERBOUNDS Subroutine NO Lower bounds on parameters
dist_PARMINIT Subroutine NO Initial values

for parameters
dist_PDF Function YES2 Probability density

function value
dist_PDFGRADIENT Subroutine NO Gradient of the PDF
dist_PDFHESSIAN Subroutine NO Hessian of the PDF
dist_QUANTILE Function NO Quantile for a given CDF value
dist_SCALETRANSFORM Function NO Type of relationship between

the first distribution parameter
and the scale parameter

dist_SDF Function NO Survival function value
dist_SDFGRADIENT Subroutine NO Gradient of the SDF
dist_SDFHESSIAN Subroutine NO Hessian of the SDF
dist_UPPERBOUNDS Subroutine NO Upper bounds on parameters

Notes:
1. Either the dist_CDF or the dist_LOGCDF function must be defined.
2. Either the dist_PDF or the dist_LOGPDF function must be defined.
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The signature syntax and semantics of each function or subroutine are as follows:

dist_CDF
defines a function that returns the value of the cumulative distribution function (CDF) of the distribution
at the specified values of the random variable and distribution parameters.

• Type: Function

• Required: YES

• Number of arguments: mC 1, where m is the number of distribution parameters

• Sequence and type of arguments:

x Numeric value of the random variable at which the CDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

• Return value: Numeric value that contains the CDF value F.xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

F.xIp1; p2; : : : ; pm/ D F.
x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

F.xIp1; p2; : : : ; pm/ D F.
x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_CDF(x, P1, P2);
/* Code to compute CDF by using x, P1, and P2 */

F = <computed CDF>;
return (F);

endsub;

dist_CONSTANTPARM
defines a subroutine that specifies constant parameters. A parameter is constant if it is required for
defining a distribution but is not subject to optimization in PROC HPSEVERITY. Constant parameters
are required to be part of the model in order to compute the PDF or the CDF of the distribution.
Typically, values of these parameters are known a priori or estimated using some means other than
the maximum likelihood method used by PROC HPSEVERITY. You can estimate them inside the
dist_PARMINIT subroutine. Once initialized, the parameters remain constant in the context of
PROC HPSEVERITY; that is, they retain their initial value. PROC HPSEVERITY estimates only the
nonconstant parameters.
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• Type: Subroutine

• Required: NO

• Number of arguments: k, where k is the number of constant parameters

• Sequence and type of arguments:

constant parameter 1 Name of the first constant parameter
. . .

constant parameter k Name of the kth constant parameter

• Return value: None

Here is a sample structure of the subroutine for a distribution named ‘FOO’ that has P3 and P5 as its
constant parameters, assuming that distribution has at least three parameters:

subroutine FOO_CONSTANTPARM(p5, p3);
endsub;

Note the following points when you specify the constant parameters:

• At least one distribution parameter must be free to be optimized; that is, if a distribution has total
m parameters, then k must be strictly less than m.

• If you want to use this distribution for modeling regression effects, then the first parameter must
not be a constant parameter.

• The order of arguments in the signature of this subroutine does not matter as long as each
argument’s name matches the name of one of the parameters that are defined in the signature of
the dist_PDF function.

• The constant parameters must be specified in signatures of all the functions and subroutines that
accept distribution parameters as their arguments.

• You must provide a nonmissing initial value for each constant parameter by using one of the
supported parameter initialization methods.

dist_DESCRIPTION
defines a function that returns a description of the distribution.

• Type: Function

• Required: NO

• Number of arguments: None

• Sequence and type of arguments: Not applicable

• Return value: Character value containing a description of the distribution

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_DESCRIPTION() $48;
length desc $48;
desc = "A model for a continuous distribution named foo";
return (desc);

endsub;
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There is no restriction on the length of the description (the length of 48 used in the previous example is
for illustration purposes only). However, if the length is greater than 256, then only the first 256 charac-
ters appear in the displayed output and in the _DESCRIPTION_ variable of the OUTMODELINFO=
data set. Hence, the recommended length of the description is less than or equal to 256.

dist_LOGcore
defines a function that returns the natural logarithm of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, or SDF.

• Type: Function

• Required: YES only if core is PDF or CDF and you have not defined that core function; otherwise,
NO

• Number of arguments: mC 1, where m is the number of distribution parameters

• Sequence and type of arguments:

x Numeric value of the random variable at which the natural logarithm of the core function
should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

• Return value: Numeric value that contains the natural logarithm of the core function

Here is a sample structure of the function for the core function PDF of a distribution named ‘FOO’:

function FOO_LOGPDF(x, P1, P2);
/* Code to compute LOGPDF by using x, P1, and P2 */

l = <computed LOGPDF>;
return (l);

endsub;

dist_LOWERBOUNDS
defines a subroutine that returns lower bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the HPSEVERITY procedure assumes a lower bound of
0 for each parameter. If a lower bound of li is returned for a parameter pi , then the HPSEVERITY
procedure assumes that li < pi (strict inequality). If a missing value is returned for some parameter,
then the HPSEVERITY procedure assumes that there is no lower bound for that parameter (equivalent
to a lower bound of �1).

• Type: Subroutine

• Required: NO

• Number of arguments: m, where m is the number of distribution parameters
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• Sequence and type of arguments:

p1 Output argument that returns the lower bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the lower bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the lower bound on the mth parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

• Return value: The results, lower bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_LOWERBOUNDS(p1, p2);
outargs p1, p2;

p1 = <lower bound for P1>;
p2 = <lower bound for P2>;

endsub;

dist_PARMINIT
defines a subroutine that returns the initial values for the distribution’s parameters given an empirical
distribution function (EDF) estimate.

• Type: Subroutine

• Required: NO

• Number of arguments: mC 4, where m is the number of distribution parameters

• Sequence and type of arguments:

dim Input numeric value that contains the dimension of the x, nx, and F array arguments.

x{*} Input numeric array of dimension dim that contains values of the random variables
at which the EDF estimate is available. It can be assumed that x contains values in
an increasing order. In other words, if i < j , then x[i] < x[j].

nx{*} Input numeric array of dimension dim. Each nx[i] contains the number of observa-
tions in the original data that have the value x[i].

F{*} Input numeric array of dimension dim. Each F[i] contains the EDF estimate for x[i].
This estimate is computed by the HPSEVERITY procedure based on the options that
you specify in the LOSS statement and the EMPIRICALCDF= option.

Ftype Input numeric value that contains the type of the EDF estimate that is stored in x
and F. See the section “Supplying EDF Estimates to Functions and Subroutines” on
page 303 for definition of types.

p1 Output argument that returns the initial value of the first parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.
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p2 Output argument that returns the initial value of the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the initial value of the mth parameter. You must specify
this in the OUTARGS statement inside the subroutine’s definition.

• Return value: The results, initial values of the parameters, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_PARMINIT(dim, x{*}, nx{*}, F{*}, Ftype, p1, p2);
outargs p1, p2;

/* Code to initialize values of P1 and P2 by using
dim, x, nx, and F */

p1 = <initial value for p1>;
p2 = <initial value for p2>;

endsub;

dist_PDF
defines a function that returns the value of the probability density function (PDF) of the distribution at
the specified values of the random variable and distribution parameters.

• Type: Function

• Required: YES

• Number of arguments: mC 1, where m is the number of distribution parameters

• Sequence and type of arguments:

x Numeric value of the random variable at which the PDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

• Return value: Numeric value that contains the PDF value f .xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when you estimate a response
variable model with regression effects, then the first parameter of this distribution must be a scale
parameter or log-transformed scale parameter. In other words, if the distribution has a scale parameter,
then the following equation must be satisfied:

f .xIp1; p2; : : : ; pm/ D
1

p1
f .

x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

f .xIp1; p2; : : : ; pm/ D
1

exp.p1/
f .

x

exp.p1/
I 0; p2; : : : ; pm/
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Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_PDF(x, P1, P2);
/* Code to compute PDF by using x, P1, and P2 */

f = <computed PDF>;
return (f);

endsub;

dist_QUANTILE
defines a function that returns the quantile of the distribution at the specified value of the CDF for the
specified values of distribution parameters.

• Type: Function

• Required: NO

• Number of arguments: mC 1, where m is the number of distribution parameters

• Sequence and type of arguments:

cdf Numeric value of the cumulative distribution function (CDF) for which the quantile should
be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

• Return value: Numeric value that contains the quantile F�1.cdfIp1; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_QUANTILE(c, P1, P2);
/* Code to compute quantile by using c, P1, and P2 */

Q = <computed quantile>;
return (Q);

endsub;

dist_SCALETRANSFORM
defines a function that returns a keyword to identify the transform that needs to be applied to the scale
parameter to convert it to the first parameter of the distribution.

If you want to use this distribution for modeling regression effects, then the first parameter of this
distribution must be a scale parameter. However, for some distributions, a typical or convenient
parameterization might not have a scale parameter, but one of the parameters can be a simple transform
of the scale parameter. As an example, consider a typical parameterization of the lognormal distribution
with two parameters, location � and shape � , for which the PDF is defined as follows:

f .xI�; �/ D
1

x�
p
2�
e
� 1
2

�
log.x/��

�

�2
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You can reparameterize this distribution to contain a parameter � instead of the parameter � such
that � D log.�/. The parameter � would then be a scale parameter. However, if you want to specify
the distribution in terms of � and � (which is a more recognized form of the lognormal distribution)
and still allow it as a candidate distribution for estimating regression effects, then instead of writing
another distribution with parameters � and � , you can simply define the distribution with � as the first
parameter and specify that it is the logarithm of the scale parameter.

• Type: Function

• Required: NO

• Number of arguments: None

• Sequence and type of arguments: Not applicable

• Return value: Character value that contains one of the following keywords:

LOG specifies that the first parameter is the logarithm of the scale parameter.

IDENTITY specifies that the first parameter is a scale parameter without any transforma-
tion.

If you do not specify this function, then the IDENTITY transform is assumed.

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_SCALETRANSFORM() $8;
length xform $8;
xform = "IDENTITY";
return (xform);

endsub;

dist_SDF
defines a function that returns the value of the survival distribution function (SDF) of the distribution
at the specified values of the random variable and distribution parameters.

• Type: Function

• Required: NO

• Number of arguments: mC 1, where m is the number of distribution parameters

• Sequence and type of arguments:

x Numeric value of the random variable at which the SDF value should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

• Return value: Numeric value that contains the SDF value S.xIp1; p2; : : : ; pm/

If you want to consider this distribution as a candidate distribution when estimating a response variable
model with regression effects, then the first parameter of this distribution must be a scale parameter
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or log-transformed scale parameter. In other words, if the distribution has a scale parameter, then the
following equation must be satisfied:

S.xIp1; p2; : : : ; pm/ D S.
x

p1
I 1; p2; : : : ; pm/

If the distribution has a log-transformed scale parameter, then the following equation must be satisfied:

S.xIp1; p2; : : : ; pm/ D S.
x

exp.p1/
I 0; p2; : : : ; pm/

Here is a sample structure of the function for a distribution named ‘FOO’:

function FOO_SDF(x, P1, P2);
/* Code to compute SDF by using x, P1, and P2 */

S = <computed SDF>;
return (S);

endsub;

dist_UPPERBOUNDS
defines a subroutine that returns upper bounds for the parameters of the distribution. If this subroutine
is not defined for a given distribution, then the HPSEVERITY procedure assumes that there is no
upper bound for any of the parameters. If an upper bound of ui is returned for a parameter pi , then
the HPSEVERITY procedure assumes that pi < ui (strict inequality). If a missing value is returned
for some parameter, then the HPSEVERITY procedure assumes that there is no upper bound for that
parameter (equivalent to an upper bound of1).

• Type: Subroutine

• Required: NO

• Number of arguments: m, where m is the number of distribution parameters

• Sequence and type of arguments:

p1 Output argument that returns the upper bound on the first parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

p2 Output argument that returns the upper bound on the second parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.
. . .

pm Output argument that returns the upper bound on the mth parameter. You must
specify this in the OUTARGS statement inside the subroutine’s definition.

• Return value: The results, upper bounds on parameter values, should be returned in the parameter
arguments of the subroutine.

Here is a sample structure of the subroutine for a distribution named ‘FOO’:

subroutine FOO_UPPERBOUNDS(p1, p2);
outargs p1, p2;

p1 = <upper bound for P1>;
p2 = <upper bound for P2>;

endsub;
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dist_coreGRADIENT
defines a subroutine that returns the gradient vector of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

• Type: Subroutine

• Required: NO

• Number of arguments: mC 2, where m is the number of distribution parameters

• Sequence and type of arguments:

x Numeric value of the random variable at which the gradient should be evaluated

p1 Numeric value of the first parameter

p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

grad{*} Output numeric array of size m that contains the gradient vector evaluated at the
specified values. If h denotes the value of the core function, then the expected order
of the values in the array is as follows: @h

@p1

@h
@p2
� � �

@h
@pm

• Return value: Numeric array that contains the gradient evaluated at x for the parameter values
.p1; p2; : : : ; pm/

Here is a sample structure of the function for the core function CDF of a distribution named ‘FOO’:

subroutine FOO_CDFGRADIENT(x, P1, P2, grad{*});
outargs grad;

/* Code to compute gradient by using x, P1, and P2 */
grad[1] = <partial derivative of CDF w.r.t. P1

evaluated at x, P1, P2>;
grad[2] = <partial derivative of CDF w.r.t. P2

evaluated at x, P1, P2>;
endsub;

dist_coreHESSIAN
defines a subroutine that returns the Hessian matrix of the specified core function of the distribution at
the specified values of the random variable and distribution parameters. The core keyword can be PDF,
CDF, SDF, LOGPDF, LOGCDF, or LOGSDF.

• Type: Subroutine

• Required: NO

• Number of arguments: mC 2, where m is the number of distribution parameters

• Sequence and type of arguments:

x Numeric value of the random variable at which the Hessian matrix should be evalu-
ated

p1 Numeric value of the first parameter
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p2 Numeric value of the second parameter
. . .

pm Numeric value of the mth parameter

hess{*} Output numeric array of size m.mC 1/=2 that contains the lower triangular portion
of the Hessian matrix in a packed vector form, evaluated at the specified values. If h
denotes the value of the core function, then the expected order of the values in the
array is as follows: @

2h

@p21
j

@2h
@p1@p2

@2h

@p22
j � � � j

@2h
@p1@pm

@2h
@p2@pm

� � �
@2h

@p2m

• Return value: Numeric array that contains the lower triangular portion of the Hessian matrix
evaluated at x for the parameter values .p1; p2; : : : ; pm/

Here is a sample structure of the subroutine for the core function LOGSDF of a distribution named
‘FOO’:

subroutine FOO_LOGSDFHESSIAN(x, P1, P2, hess{*});
outargs hess;

/* Code to compute Hessian by using x, P1, and P2 */
hess[1] = <second order partial derivative of LOGSDF

w.r.t. P1 evaluated at x, P1, P2>;
hess[2] = <second order partial derivative of LOGSDF

w.r.t. P1 and P2 evaluated at x, P1, P2>;
hess[3] = <second order partial derivative of LOGSDF

w.r.t. P2 evaluated at x, P1, P2>;
endsub;

Predefined Utility Functions
The following predefined utility functions are provided with the HPSEVERITY procedure and are available
in the Sashelp.Svrtdist library:

SVRTUTIL_EDF:
This function computes the empirical distribution function (EDF) estimate at the specified value of the
random variable given the EDF estimate for a sample.

• Type: Function

• Signature: SVRTUTIL_EDF(y, n, x{*}, F{*}, Ftype)

• Argument Description:

y Value of the random variable at which the EDF estimate is desired.

n Dimension of the x and F input arrays.

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. See the section
“Supplying EDF Estimates to Functions and Subroutines” on page 303 for definition
of types.
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• Return value: The EDF estimate at y.

The type of the sample EDF estimate determines how the EDF estimate at y is computed. For more
information, see the section “Supplying EDF Estimates to Functions and Subroutines” on page 303.

SVRTUTIL_EMPLIMMOMENT:
This function computes the empirical estimate of the limited moment of specified order for the specified
upper limit, given the EDF estimate for a sample.

• Type: Function

• Signature: SVRTUTIL_EMPLIMMOMENT(k, u, n, x{*}, F{*}, Ftype)

• Argument Description:

k Order of the desired empirical limited moment.

u Upper limit on the value of the random variable to be used in the computation of the
desired empirical limited moment.

n Dimension of the x and F input arrays.

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. See the section
“Supplying EDF Estimates to Functions and Subroutines” on page 303 for definition
of types.

• Return value: The desired empirical limited moment.

The empirical limited moment is computed by using the empirical estimate of the CDF. If Fn.x/
denotes the EDF at x, then the empirical limited moment of order k with upper limit u is defined as

EnŒ.X ^ u/
k� D k

Z u

0

.1 � Fn.x//x
k�1dx

The SVRTUTIL_EMPLIMMOMENT function uses the piecewise linear nature of Fn.x/ as described
in the section “Supplying EDF Estimates to Functions and Subroutines” on page 303 to compute the
integration.

SVRTUTIL_HILLCUTOFF:
This function computes an estimate of the value where the right tail of a distribution is expected to
begin. The function implements the algorithm described in Danielsson et al. 2001. The description of
the algorithm uses the following notation:

n Number of observations in the original sample.

B Number of bootstrap samples to draw.

m1 Size of the bootstrap sample in the first step of the algorithm (m1 < n).

x
j;m

.i/
ith order statistic of jth bootstrap sample of size m (1 � i � m; 1 � j � B).

x.i/ ith order statistic of the original sample (1 � i � n).
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Given the input sample x and values of B and m1, the steps of the algorithm are as follows:

1. Take B bootstrap samples of size m1 from the original sample.

2. Find the integer k1 that minimizes the bootstrap estimate of the mean squared error:

k1 D arg min
1�k<m1

Q.m1; k/

3. Take B bootstrap samples of size m2 D m21=n from the original sample.

4. Find the integer k2 that minimizes the bootstrap estimate of the mean squared error:

k2 D arg min
1�k<m2

Q.m2; k/

5. Compute the integer kopt, which is used for computing the cutoff point:

kopt D
k21
k2

�
log.k1/

2 log.m1/ � log.k1/

�2�2 log.k1/= log.m1/

6. Set the cutoff point equal to x.koptC1/.

The bootstrap estimate of the mean squared error is computed as

Q.m; k/ D
1

B

BX
jD1

MSEj .m; k/

The mean squared error of jth bootstrap sample is computed as

MSEj .m; k/ D .Mj .m; k/ � 2.j .m; k//
2/2

where Mj .m; k/ is a control variate proposed by Danielsson et al. 2001,

Mj .m; k/ D
1

k

kX
iD1

�
log.xj;m

.m�iC1/
/ � log.xj;m

.m�k/
/
�2

and j .m; k/ is the Hill’s estimator of the tail index (Hill 1975),

j .m; k/ D
1

k

kX
iD1

log.xj;m
.m�iC1/

/ � log.xj;m
.m�k/

/

This algorithm has two tuning parameters, B and m1. The number of bootstrap samples B is chosen
based on the availability of computational resources. The optimal value of m1 is chosen such that the
following ratio, R.m1/, is minimized:

R.m1/ D
.Q.m1; k1//

2

Q.m2; k2/

The SVRTUTIL_HILLCUTOFF utility function implements the preceding algorithm. It uses the grid
search method to compute the optimal value of m1.

• Type: Function

• Signature: SVRTUTIL_HILLCUTOFF(n, x{*}, b, s, status)
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• Argument Description:

n Dimension of the array x .

x{*} Input numeric array of dimension n that contains the sample.

b Number of bootstrap samples used to estimate the mean squared error. If b is less
than 10, then a default value of 50 is used.

s Approximate number of steps used to search the optimal value of m1 in the range
Œn0:75; n � 1�. If s is less than or equal to 1, then a default value of 10 is used.

status Output argument that contains the status of the algorithm. If the algorithm succeeds
in computing a valid cutoff point, then status is set to 0. If the algorithm fails, then
status is set to 1.

• Return value: The cutoff value where the right tail is estimated to start. If the size of the input
sample is inadequate (n � 5), then a missing value is returned and status is set to a missing
value. If the algorithm fails to estimate a valid cutoff value (status = 1), then the fifth largest
value in the input sample is returned.

SVRTUTIL_PERCENTILE:
This function computes the specified empirical percentile given the EDF estimates.

• Type: Function

• Signature: SVRTUTIL_PERCENTILE(p, n, x{*}, F{*}, Ftype)

• Argument Description:

p Desired percentile. The value must be in the interval (0,1). The function returns the
100pth percentile.

n Dimension of the x and F input arrays.

x{*} Input numeric array of dimension n that contains values of the random variable
observed in the sample. These values are sorted in nondecreasing order.

F{*} Input numeric array of dimension n in which each F[i] contains the EDF estimate for
x[i]. These values must be sorted in nondecreasing order.

Ftype Type of the empirical estimate that is stored in the x and F arrays. See the section
“Supplying EDF Estimates to Functions and Subroutines” on page 303 for definition
of types.

• Return value: The 100pth percentile of the input sample.

The method used to compute the percentile depends on the type of the EDF estimate (Ftype argument).

Ftype = 1 Smoothed empirical estimates are computed using the method described in Klug-
man, Panjer, and Willmot (1998). Let bxc denote the greatest integer less than or
equal to x. Define g D bp.nC 1/c and h D p.nC 1/ � g. Then the empirical
percentile O�p is defined as

O�p D .1 � h/xŒg�C hxŒg C 1�

This method does not work if p < 1=.nC 1/ or p > n=.nC 1/. If p < 1=.nC 1/,
then the function returns O�p D xŒ1�=2, which assumes that the EDF is 0 in the
interval Œ0; xŒ1�/. If p > n=.nC 1/, then O�p D xŒn�.
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Ftype = 2 If p < F Œ1�, then O�p D xŒ1�=2, which assumes that the EDF is 0 in the interval
Œ0; xŒ1�/. If jp � F Œi�j < � for some value of i and i < n, then O�p is computed as

O�p D
xŒi �C xŒi C 1�

2

where � is a machine-precision constant as returned by the SAS function CON-
STANT(‘MACEPS’). If F Œi � 1� < p < F Œi�, then O�p is computed as

O�p D xŒi �

If p � F Œn� , then O�p D xŒn�.

Ftype = 3 If p < F Œ1�, then O�p D xŒ1�=2, which assumes that the EDF is 0 in the interval
Œ0; xŒ1�/. If jp � F Œi�j < � for some value of i and i < n, then O�p is computed as

O�p D
xŒi �C xŒi C 1�

2

where � is a machine-precision constant as returned by the SAS function CON-
STANT(’MACEPS’). If F Œi � 1� < p < F Œi�, then O�p is computed as

O�p D xŒi � 1�C .p � F Œi � 1�/
xŒi � � xŒi � 1�

F Œi � � F Œi � 1�

If p � F Œn� , then O�p D xŒn�.

SVRTUTIL_RAWMOMENTS:
This subroutine computes the raw moments of a sample.

• Type: Subroutine

• Signature: SVRTUTIL_RAWMOMENTS(n, x{*}, nx{*}, nRaw, raw{*})

• Argument Description:

n Dimension of the x and nx input arrays.

x{*} Input numeric array of dimension n that contains distinct values of the random variable
that are observed in the sample.

nx{*} Input numeric array of dimension n in which each nx[i] contains the number of
observations in the sample that have the value x[i].

nRaw Desired number of raw moments. The output array raw contains the first nRaw raw
moments.

raw{*} Output array of raw moments. The kth element in the array (raw{k}) contains the kth
raw moment, where 1 � k � nRaw.

• Return value: Numeric array raw that contains the first nRaw raw moments. The array contains
missing values if the sample has no observations (that is, if all the values in the nx array add up
to zero).

SVRTUTIL_SORT:
This function sorts the given array of numeric values in an ascending or descending order.

• Type: Subroutine

• Signature: SVRTUTIL_SORT(n, x{*}, flag)
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• Argument Description:

n Dimension of the input array x .

x{*} Numeric array that contains the values to be sorted at input. The subroutine uses the
same array to return the sorted values.

flag A numeric value that controls the sort order. If flag is 0, then the values are sorted in
an ascending order. If flag has any value other than 0, then the values are sorted in
descending order.

• Return value: Numeric array x , which is sorted in place (that is, the sorted array is stored in the
same storage area occupied by the input array x).

You can use the following predefined functions when you use the FCMP procedure to define functions and
subroutines. They are summarized here for your information. For more information, see the FCMP procedure
documentation in Base SAS Procedures Guide.

INVCDF:
This function computes the quantile from any continuous probability distribution by numerically
inverting the CDF of that distribution. You need to specify the CDF function of the distribution, the
values of its parameters, and the cumulative probability to compute the quantile.

LIMMOMENT:
This function computes the limited moment of order k with upper limit u for any continuous probability
distribution. The limited moment is defined as

EŒ.X ^ u/k� D

Z u

0

xkf .x/dx C

Z 1
u

ukf .x/dx

D

Z u

0

xkf .x/dx C uk.1 � F.u//

where f .x/ and F.x/ denote the PDF and the CDF of the distribution, respectively. The LIMMO-
MENT function uses the following alternate definition, which can be derived using integration-by-parts:

EŒ.X ^ u/k� D k

Z u

0

.1 � F.x//xk�1dx

You need to specify the CDF function of the distribution, the values of its parameters, and the values
of k and u to compute the limited moment.

Scoring Functions
Scoring refers to the act of evaluating a distribution function, such as LOGPDF, SDF, or QUANTILE, on
an observation by using the fitted parameter estimates of that distribution. You can do scoring in a DATA
step by using the OUTEST= data set that you create with PROC HPSEVERITY. However, that approach
requires some cumbersome programming. In order to simplify the scoring process, you can specify that
PROC HPSEVERITY create scoring functions for each fitted distribution.
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As an example, assume that you have fitted the Pareto distribution by using PROC HPSEVERITY and that it
converges. Further assume that you want to use the fitted distribution to evaluate the probability of observing
a loss value greater than some set of regulatory limits {L} that are encoded in a data set. You can simplify this
scoring process as follows. First, in the PROC HPSEVERITY step that fits your distributions, you create the
scoring functions library by specifying the OUTSCORELIB statement as illustrated in the following steps:

proc hpseverity data=input;
loss lossclaim;
dist pareto;
outscorelib outlib=sasuser.fitdist;

run;

Upon successful completion, if the Pareto distribution model has converged, then the Sasuser.Fitdist li-
brary contains the SEV_SDF scoring function in addition to other scoring functions, such as SEV_PDF ,
SEV_LOGPDF , and so on. Further, PROC HPSEVERITY also sets the CMPLIB system option to include
the Sasuser.Fitdist library. If the set of limits {L} is recorded in the variable Limit in the scoring data set
Work.Limits, then you can submit the following DATA step to compute the probability of seeing a loss greater
than each limit:

data prob;
set work.limits;
exceedance_probability = sev_sdf(limit);

run;

Without the use of scoring functions, you can still perform this scoring task, but the DATA step that you need
to write to accomplish it becomes more complicated and less flexible. For example, you would need to read
the parameter estimates from some output created by PROC HPSEVERITY. To do that, you would need to
know the parameter names, which are different for different distributions; this in turn would require you to
write a specific DATA step for each distribution or to write a SAS macro. With the use of scoring functions,
you can accomplish that task much more easily.

If you fit multiple distributions, then you can specify the COMMONPACKAGE option in the OUTSCORELIB
statement as follows:

proc hpseverity data=input;
loss lossclaim;
dist exp pareto weibull;
outscorelib outlib=sasuser.fitdist commonpackage;

run;

The preceding step creates scoring functions such as SEV_SDF_Exp, SEV_SDF_Pareto, and
SEV_SDF_Weibull . You can use them to compare the probabilities of exceeding the limit for differ-
ent distributions by using the following DATA step:

data prob;
set work.limits;
exceedance_exp = sev_sdf_exp(limit);
exceedance_pareto = sev_sdf_pareto(limit);
exceedance_weibull = sev_sdf_weibull(limit);

run;
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Formal Description

PROC HPSEVERITY creates a scoring function for each distribution function. A distribution function is
defined as any function named dist_suffix , where dist is the name of a distribution that you specify in the
DIST statement and the function’s signature is identical to the signature of the required distribution function
such as dist_CDF or dist_LOGCDF. For example, for the function ‘FOO_BAR’ to be a distribution function,
you must specify the distribution ‘FOO’ in the DIST statement and you must define ‘FOO_BAR’ in the
following manner if the distribution ‘FOO’ has parameters named ‘P1’ and ‘P2’:

function FOO_BAR(y, P1, P2);
/* Code to compute BAR by using y, P1, and P2 */
R = <computed BAR>;
return (R);

endsub;

For more information about the signature that defines a distribution function, see the description of the
dist_CDF function in the section “Defining a Severity Distribution Model with the FCMP Procedure” on
page 311.

The name and package of the scoring function of a distribution function depend on whether you specify the
COMMONPACKAGE option in the OUTSCORELIB statement.

When you do not specify the COMMONPACKAGE option, the scoring function that corresponds to the
distribution function dist_suffix is named SEV_suffix , where SEV_ is the standard prefix of all scoring
functions. The scoring function is created in a package named dist . Each scoring function accepts only one
argument, the value of the loss variable, and returns the same value as the value returned by the corresponding
distribution function for the final estimates of the distribution’s parameters. For example, for the preceding
‘FOO_BAR’ distribution function, the scoring function named ‘SEV_BAR’ is created in the package named
‘FOO’ and ‘SEV_BAR’ has the following signature:

function SEV_BAR(y);
/* returns value of FOO_BAR for the supplied value

of y and fitted values of P1, P2 */
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then the scoring function
that corresponds to the distribution function dist_suffix is named SEV_suffix_dist , where SEV_ is the standard
prefix of all scoring functions. The scoring function is created in a package named sevfit . For example, for
the preceding ‘FOO_BAR’ distribution function, if you specify the COMMONPACKAGE option, the scoring
function named ‘SEV_BAR_FOO’ is created in the sevfit package and ‘SEV_BAR_FOO’ has the following
signature:

function SEV_BAR_FOO(y);
/* returns value of FOO_BAR for the supplied value

of y and fitted values of P1, P2 */
endsub;
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Scoring Functions for the Scale Regression Model

If you use the SCALEMODEL statement to specify a scale regression model, then PROC HPSEVERITY
generates the scoring functions when you specify only singleton continuous effects. If you specify interaction
or classification effects, then scoring functions are not generated.

For a scale regression model, the estimate of the scale parameter or the log-transformed scale parameter of
the distribution depends on the values of the regressors. So PROC HPSEVERITY creates a scoring function
that has the following signature, where x{*} represents the array of regressors:

function SEV_BAR(y, x{*});
/* returns value of FOO_BAR for the supplied value of x and fitted values of P1, P2 */

endsub;

As an illustration of using this form, assume that you submit the following PROC HPSEVERITY step to
create the scoring library Sasuser.Scalescore:

proc hpseverity data=input;
loss lossclaim;
scalemodel x1-x3;
dist pareto;
outscorelib outlib=sasuser.scalescore;

run;

Your scoring data set must contain all the regressors that you specify in the SCALEMODEL statement. You
can submit the following DATA step to score observations by using the scale regression model:

data prob;
array regvals{*} x1-x3;
set work.limits;
exceedance_probability = sev_sdf(limit, regvals);

run;

PROC HPSEVERITY creates two utility functions, SEV_NUMREG and SEV_REGNAME, in the OUTLIB=
library that return the number of regressors and name of a given regressor, respectively. They are described in
detail in the next section. These utility functions are useful when you do not have easy access to the regressor
names in the SCALEMODEL statement. You can use the utility functions as follows:

data prob;
array regvals{10} _temporary_;
set work.limits;
do i = 1 to sev_numreg();

regvals(i) = input(vvaluex(sev_regname(i)), best12.);
end;
exceedance_probability = sev_sdf(limit, regvals);

run;

The dimension of the regressor values array that you supply to the scoring function must be equal to K C L,
where K is the number of regressors that you specify in the SCALEMODEL statement irrespective of whether
PROC HPSEVERITY deems any of those regressors to be redundant. L is 1 if you specify an OFFSET=
variable in the SCALEMODEL statement, and 0 otherwise.
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Utility Functions and Subroutines in the OUTLIB= Library

In addition to creating the scoring functions for all distribution functions, PROC HPSEVERITY creates the
following utility functions and subroutines in the OUTLIB= library.

SEV_NUMPARM | SEV_NUMPARM_dist
is a function that returns the number of distribution parameters and has the following signature:

• Type: Function

• Number of arguments: 0

• Sequence and type of arguments: Not applicable

• Return value: Numeric value that contains the number of distribution parameters

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_NUMPARM is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_NUMPARM();
n = <number of distribution parameters>;
return (n);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , the function named SEV_NUMPARM_dist is created in the sevfit package.
SEV_NUMPARM_dist has the same structure as the SEV_NUMPARM function that is described
previously.

SEV_PARMEST | SEV_PARMEST_dist
is a subroutine that returns the estimate and standard error of a specified distribution parameter and has
the following signature:

• Type: Subroutine

• Number of arguments: 3

• Sequence and type of arguments:

index specifies the numeric value of the index of the distribution parameter for which you want
the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this subroutine belongs.

est specifies the output argument that returns the estimate of the requested parameter.

stderr specifies the output argument that returns the standard error of the requested parameter.

• Return value: Estimate and standard error of the requested distribution parameter that are returned
in the output arguments est and stderr , respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_PARMEST is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the subroutine:
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subroutine SEV_PARMEST(index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the distribution parameter

at position 'index'>;
stderr = <value of the standard error for distribution parameter

at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , the subroutine named SEV_PARMEST_dist is created in the sevfit package.
SEV_PARMEST_dist has the same structure as the SEV_PARMEST subroutine that is described
previously.

If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then for index=1, the returned estimates are of �0, the base value of the
scale parameter, or log.�0/ if the distribution has a log-scale parameter. For more information about
�0, see the section “Estimating Regression Effects” on page 283.

SEV_PARMNAME | SEV_PARMNAME_dist
is a function that returns the name of a specified distribution parameter and has the following signature:

• Type: Function

• Number of arguments: 1

• Sequence and type of arguments:

index specifies the numeric value of the index of the distribution parameter for which you want
the information. The value of index must be in the interval [1,m], where m is the number
of parameters in the distribution to which this function belongs.

• Return value: Character value that contains the name of the distribution parameter that appears at
the position index in the distribution’s definition

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
function named SEV_PARMNAME is created in the package of each distribution.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_PARMNAME(index) $32;
name = <name of the distribution parameter at position 'index'>;
return (name);

endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for each
distribution dist , a function named SEV_PARMNAME_dist is created in the sevfit package.
SEV_PARMNAME_dist has the same structure as the SEV_PARMNAME function that is described
previously.

If you use the SCALEMODEL statement to specify a scale regression model, and if you specify only
singleton continuous effects, then the following helper functions and subroutines are also created in the
OUTLIB= library.
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SEV_NUMREG
is a function that returns the number of regressors and has the following signature:

• Type: Function

• Number of arguments: 0

• Sequence and type of arguments: Not applicable

• Return value: Numeric value that contains the number of regressors that you specify in the
SCALEMODEL statement. If you specify an OFFSET= variable in the SCALEMODEL state-
ment, then the returned value is equal to 1 plus the number of regressors that you specify in the
SCALEMODEL statement.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_NUMREG();
m = <number of regressors>;
if (<offset variable is specified>) then m = m + 1;
return (m);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.

SEV_REGEST | SEV_REGEST_dist
is a subroutine that returns the estimate and standard error of a specified regression parameter and has
the following signature:

• Type: Subroutine

• Number of arguments: 3

• Sequence and type of arguments:

index specifies the numeric value of the index of the regression parameter for which you want
the information. The value of index must be in the interval [1,K], where K is the number
of regressors as returned by the SEV_NUMREG function. If you specify an OFFSET=
variable in the SCALEMODEL statement, then an index value of K corresponds to the
offset variable.

est specifies the output argument that returns the estimate of the requested regression param-
eter.

stderr specifies the output argument that returns the standard error of the requested regression
parameter.

• Return value: Estimate and standard error of the requested regression parameter that are returned
in the output arguments est and stderr , respectively

If you do not specify the COMMONPACKAGE option in the OUTSCORELIB statement, then a
subroutine named SEV_REGEST is created in the package of each distribution. Here is a sample
structure of the code that PROC HPSEVERITY uses to define the subroutine:
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subroutine SEV_REGEST(index, est, stderr);
outargs est, stderr;
est = <value of the estimate for the regression parameter

at position 'index'>;
stderr = <value of the standard error for regression parameter

at position 'index'>;
endsub;

If you specify the COMMONPACKAGE option in the OUTSCORELIB statement, then for
each distribution dist , the subroutine named SEV_REGEST_dist is created in the sevfit package.
SEV_REGEST_dist has the same structure as the SEV_REGEST subroutine that is described previ-
ously.

If the regressor that corresponds to the specified index value is a redundant regressor, the returned
values of both est and stderr are equal to the special missing value of .R. If you specify an OFFSET=
variable in the SCALEMODEL statement and if the index value corresponds to the offset variable —
that is, it is equal to the value that the SEV_NUMREG function returns — then the returned value of
est is equal to 1 and the returned value of stderr is equal to the special missing value of .F.

SEV_REGNAME
is a function that returns the name of a specified regressor and has the following signature:

• Type: Function

• Number of arguments: 1

• Sequence and type of arguments:

index specifies the numeric value of the index of the regressor for which you want the name.
The value of index must be in the interval [1,K], where K is the number of regressors as
returned by the SEV_NUMREG function. If you specify an OFFSET= variable in the
SCALEMODEL statement, then an index value of K corresponds to the offset variable.

• Return value: Character value that contains the name of the regressor that appears at the position
index in the SCALEMODEL statement. If you specify an OFFSET= variable in the SCALE-
MODEL statement, then for an index value of K, the returned value contains the name of the
offset variable.

Here is a sample structure of the code that PROC HPSEVERITY uses to define the function:

function SEV_REGNAME(index) $32;
name = <name of regressor at position 'index'>;
return (name);

endsub;

This function does not depend on any distribution, so it is always created in the sevfit package.
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Custom Objective Functions
You can use a series of programming statements that use variables in the DATA= data set to assign a value to
an objective function symbol. You must specify the objective function symbol by using the OBJECTIVE=
option in the PROC HPSEVERITY statement.

The objective function can be programmed such that it is applicable to any distribution that is used in
the model. For that purpose, PROC HPSEVERITY recognizes the following keyword functions in the
programming statements:

_PDF_(x) returns the probability density function (PDF) of a distribution evaluated at the current
value of a data set variable x.

_CDF_(x) returns the cumulative distribution function (CDF) of a distribution evaluated at the current
value of a data set variable x.

_SDF_(x) returns the survival distribution function (SDF) of a distribution evaluated at the current
value of a data set variable x.

_LOGPDF_(x) returns the natural logarithm of the PDF of a distribution evaluated at the current value of
a data set variable x.

_LOGCDF_(x) returns the natural logarithm of the CDF of a distribution evaluated at the current value of
a data set variable x.

_LOGSDF_(x) returns the natural logarithm of the SDF of a distribution evaluated at the current value of
a data set variable x.

_EDF_(x) returns the empirical distribution function (EDF) estimate evaluated at the current value
of a data set variable x. Internally, PROC HPSEVERITY computes the estimate using
the SVRTUTIL_EDF function as described in the section “Predefined Utility Functions”
on page 323. The EDF estimate that is required by the SVRTUTIL_EDF function is
computed by using the response variable values in the current BY group or in the entire
input data set if you do not specify the BY statement.

_EMPLIMMOMENT_(k, u)
returns the empirical limited moment of order k evaluated at the current value of a data
set variable u that represents the upper limit of the limited moment. The order k can
also be a data set variable. Internally, PROC HPSEVERITY computes the moment using
the SVRTUTIL_EMPLIMMOMENT function as described in the section “Predefined
Utility Functions” on page 323. The EDF estimate that is required by the SVRTU-
TIL_EMPLIMMOMENT function is computed by using the response variable values in
the current BY group or in the entire input data set if you do not specify the BY statement.

_LIMMOMENT_(k, u)
returns the limited moment of order k evaluated at the current value of a data set variable
u that represents the upper limit of the limited moment. The order k can be a data set
variable or a constant. Internally, for each candidate distribution, PROC HPSEVERITY
computes the moment using the LIMMOMENT function as described in the section
“Predefined Utility Functions” on page 323.

All the preceding functions are right-hand side functions. They act as placeholders for distribution-specific
functions, with the exception of _EDF_ and _EMPLIMMOMENT_ functions.
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As an example, let the data set Work.Test contain a response variable Y and a left-truncation threshold variable
T. The following statements use the values in this data set to fit a model with distribution D such that the
parameters of the model minimize the value of the objective function symbol MYOBJ:

options cmplib=(work.mydist);
proc hpseverity data=work.test objective=myobj;

loss y / lt=t;

myobj = -_LOGPDF_(y);
if (not(missing(t))) then

myobj = myobj + log(1-_CDF_(t));

dist d;
run;

The symbol MYOBJ is designated as an objective function symbol by using the OBJECTIVE= option in the
PROC HPSEVERITY statement. The response variable Y and left-truncation variable T are specified in the
LOSS statement. The distribution D is specified in the DIST statement. The remaining statements constitute
a program that computes the value of the MYOBJ symbol.

Let the distribution D have parameters P1 and P2. In order to estimate the model for this distribution, PROC
HPSEVERITY internally converts the generic program to the following program specific to distribution D:

myobj = -D_LOGPDF(y, p1, p2);
if (not(missing(t))) then

myobj = myobj + log(1-D_CDF(t, p1, p2));

Note that the generic keyword functions _LOGPDF_ and _CDF_ have been replaced with distribution-specific
functions D_LOGPDF and D_CDF, respectively, with appropriate distribution parameters. The D_LOGPDF
and D_CDF functions must have been defined previously and are assumed to be available in the Work.Mydist
library that you specify in the CMPLIB= option.

The program is executed for each observation in Work.Test to compute the value of MYOBJ by using the
values of variables Y and T in that observation and internally computed values of the model parameters
P1 and P2. The values of MYOBJ are then added over all the observations of the data set or over all the
observations of the current BY group if you specify the BY statement. The resulting aggregate value is the
value of the objective function, and it is supplied to the optimizer. If the optimizer requires derivatives of
the objective function, then PROC HPSEVERITY automatically differentiates MYOBJ with respect to the
parameters P1 and P2. The optimizer iterates over various combinations of the values of parameters P1 and
P2, each time computing a new value of the objective function and the needed derivatives of it, until it finds a
combination that minimizes the objective function.

Note the following points when you define your own program to compute the custom objective function:

• The value of the objective function is always minimized by PROC HPSEVERITY. If you want to
maximize the value of a certain objective, then add a statement that assigns the negated value of the
maximization objective to the objective function symbol that you specify in the OBJECTIVE= option.
Minimization of the negated objective is equivalent to the maximization of the original objective.

• The contributions of individual observations are always added to compute the overall objective function
in a given iteration of the optimizer. If you specify the WEIGHT statement, then the contribution of
each observation is weighted by multiplying it with the normalized value of the weight variable for
that observation.
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• If you are fitting multiple distributions in one PROC HPSEVERITY step and use any of the keyword
functions in your program, then it is recommended that you do not explicitly use the parameters of any
of the specified distributions in your programming statements.

• If you use a specific keyword function in your programming statements, then the corresponding
distribution functions must be defined in a library that you specify in the CMPLIB= system option
or in Sashelp.Svrtdist, the predefined functions library. In the preceding example, it is assumed that
the functions D_LOGPDF and D_CDF are defined in the Work.Mydist library that is specified in the
CMPLIB= option.

• You can use most DATA step statements and functions in your program. The DATA step file and the
data set I/O statements (for example, INPUT, FILE, SET, and MERGE) are not available. However,
some functionality of the PUT statement is supported. See the section “PROC FCMP and DATA Step
Differences” in Base SAS Procedures Guide for more information. In addition to the differences listed
in that section, the following differences exist:

– Only numeric-valued variables can be used in PROC HPSEVERITY programming statements.
This restriction also implies that you cannot use SAS functions or call routines that require
character-valued arguments, unless you pass those arguments as constant (literal) strings or
characters.

– You cannot use functions that create lagged versions of a variable in PROC HPSEVERITY
programming statements. If you need lagged versions, then you can use a DATA step prior to the
PROC HPSEVERITY step to add those versions to the input data set.

• When coding your programming statements, avoid defining variables that begin with an underscore
(_), because they might conflict with internal variables created by PROC HPSEVERITY.

Custom Objective Functions and Regression Effects

If you specify regression effects by using the SCALEMODEL statement, then PROC HPSEVERITY
automatically adds a statement prior to your programming statements to compute the value of the scale
parameter or the log-transformed scale parameter of the distribution using the values of the regression variables
and internally created regression parameters. For example, if your specification of the SCALEMODEL
statement results in three regression effects x1, x2, and x3, then for a model that contains the distribution D
with scale parameter S, PROC HPSEVERITY prepends your program with a statement that is equivalent to
the following statement:

S = _SEVTHETA0 * exp(_SEVBETA1 * x1 + _SEVBETA2 * x2 + _SEVBETA3 * x3);

If a model contains a distribution D1 with a log-transformed scale parameter M, PROC HPSEVERITY
prepends your program with a statement that is equivalent to the following statement:

M = _SEVTHETA0 + _SEVBETA1 * x1 + _SEVBETA2 * x2 + _SEVBETA3 * x3;

The _SEVTHETA0, _SEVBETA1, _SEVBETA2, and _SEVBETA3 are the internal regression parameters
associated with the intercept and the regression effects x1, x2, and x3, respectively.

Since the names of the internal regression parameters start with a prefix _SEV, if you use a variable in your
program with a name that begins with _SEV, then PROC HPSEVERITY writes an error message to the SAS
log and stops processing.



Input Data Sets F 339

Input Data Sets
PROC HPSEVERITY accepts DATA= and INEST= data sets as input data sets. This section details the
information they are expected to contain.

DATA= Data Set

The DATA= data set is expected to contain the values of the analysis variables that you specify in the LOSS
statement and the SCALEMODEL statement.

If you specify the BY statement, then the DATA= data set must contain all the BY variables that you specify
in the BY statement and the data set must be sorted by the BY variables unless you specify the NOTSORTED
option in the BY statement.

INEST= Data Set

The INEST= data set is expected to contain the initial values of the parameters for the parameter estimation
process.

If you specify the SCALEMODEL statement, then you can use the INEST= data set only if the SCALE-
MODEL statement contains singleton continuous effects.

If you specify the BY statement, then the INEST= data set must contain all the BY variables that you specify
in the BY statement. If you do not specify the NOTSORTED option in the BY statement, then the INEST=
data set must be sorted by the BY variables. However, it is not required to contain all the BY groups present
in the DATA= data set. For the BY groups that are not present in the INEST= data set, the default parameter
initialization method is used. If you specify the NOTSORTED option in the BY statement, then the INEST=
data set must contain all the BY groups that are present in the DATA= data set and they must appear in the
same order as they appear in the DATA= data set.

In addition to any variables that you specify in the BY statement, the data set must contain the following
variables:

_MODEL_ identifying name of the distribution for which the estimates are provided.

_TYPE_ type of the estimate. The value of this variable must be EST for an observation to be valid.

<Parameter 1> . . . <Parameter M>
M variables, named after the parameters of all candidate distributions, that contain initial
values of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are read only
from variables for parameters that correspond to the distribution that is indicated by the
_MODEL_ variable.

If you specify a missing value for some parameters, then default initial values are used
unless the parameter is initialized by using the INIT= option in the DIST statement. If
you want to use the dist_PARMINIT subroutine for initializing the parameters of a model,
then you should either not specify the model in the INEST= data set or specify missing
values for all the distribution parameters in the INEST= data set and not use the INIT=
option in the DIST statement.
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If you specify regressors, then the initial value that you provide for the first parameter of
each distribution must be the base value of the scale or log-transformed scale parameter.
For more information, see the section “Estimating Regression Effects” on page 283.

<Regressor 1> . . . <Regressor K>
If you specify K regressors in the SCALEMODEL statement, then the INEST= data set
must contain K variables that are named for each regressor. The variables contain initial
values of the respective regression coefficients. If a regressor is linearly dependent on
other regressors for a given BY group, then you can indicate this by providing a special
missing value of .R for the respective variable. In a given BY group, if you mark a
variable as linearly dependent for one model, then you must mark that variable as linearly
dependent for all the models. Similarly, in a given BY group, if you do not mark a variable
as linearly dependent for one model, then you must not mark that variable as linearly
dependent for all the models.

Output Data Sets
PROC HPSEVERITY writes the OUTCDF=, OUTEST=, OUTMODELINFO=, and OUTSTAT= data sets
when requested by their respective options. The data sets and their contents are described in the following
sections.

OUTCDF= Data Set

The OUTCDF= data set records the estimates of the cumulative distribution function (CDF) of each of the
specified model distributions and an estimate of the empirical distribution function (EDF). This data set is
created only when you run PROC HPSEVERITY in single-machine mode.

If you specify BY variables, then the data are organized in BY groups and the data set contains variables that
you specify in the BY statement. In addition, the data set contains the following variables:

<response variable>
value of the response variable. The values are sorted. If there are multiple BY groups, the
values are sorted within each BY group.

_OBSNUM_ observation number in the DATA= data set. This is a sequence number that indicates the
order in which the procedure accesses the observation; it does not necessarily reflect the
actual observation number in the data set.

_EDF_ estimate of the empirical distribution function (EDF). This estimate is computed by using
the EMPIRICALCDF= option that you specify in the PROC HPSEVERITY statement.

_EDF_STD estimate of the standard error of EDF. This estimate is computed by using a method
that is appropriate for the EMPIRICALCDF= option that you specify in the PROC
HPSEVERITY statement.

_EDF_LOWER estimate of the lower confidence limit of EDF for a pointwise 100.1 � ˛/% confidence
interval, where ˛ is the value of the EDFALPHA= option that you specify in the PROC
HPSEVERITY statement (default is ˛ D 0:05). For an EDF estimate Fn that has standard
error �n, it is computed as MAX.0; Fn � z.1�˛=2/�n/, where zp is the pth quantile from
the standard normal distribution.
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_EDF_UPPER estimate of the upper confidence limit of EDF for a pointwise 100.1 � ˛/% confidence
interval, where ˛ is the value of the EDFALPHA= option that you specify in the PROC
HPSEVERITY statement (default is ˛ D 0:05). For an EDF estimate Fn that has standard
error �n, it is computed as MIN.1; Fn C z.1�˛=2/�n/, where zp is the pth quantile from
the standard normal distribution.

<distribution1>_CDF . . . <distributionD>_CDF
estimate of the cumulative distribution function (CDF) for each of the D candidate
distributions, computed by using the final parameter estimates for that distribution. This
value is missing if the parameter estimation process does not converge for the given
distribution.

If you specify regressor variables, then the reported estimates are from a mixture distribu-
tion. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 287.

If you specify truncation, then the data set contains the following additional variables:

<distribution1>_COND_CDF . . . <distributionD>_COND_CDF
estimate of the conditional CDF for each of the D candidate distributions, computed
by using the final parameter estimates for that distribution. This value is missing if the
parameter estimation process does not converge for the distribution. The conditional
estimates are computed by using the method that is described in the section “Truncation
and Conditional CDF Estimates” on page 279.

OUTEST= Data Set

The OUTEST= data set records the estimates of the model parameters. It also contains estimates of their
standard errors and optionally their covariance structure. If you specify BY variables, then the data are
organized in BY groups and the data set contains variables that you specify in the BY statement.

If you do not specify the COVOUT option, then the data set contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information about
this distribution.

_TYPE_ type of the estimates reported in this observation. It can take one of the following two
values:

EST point estimates of model parameters

STDERR standard error estimates of model parameters

_STATUS_ status of the reported estimates. The possible values are listed in the section “_STATUS_
Variable Values” on page 344.

<Parameter 1> . . . <Parameter M>
M variables, named after the parameters of all candidate distributions, that contain
estimates of the respective parameters. M is the cardinality of the union of parameter
name sets from all candidate distributions. In an observation, estimates are populated
only for parameters that correspond to the distribution that is indicated by the _MODEL_
variable. If _TYPE_ is EST, then the estimates are missing if the model does not
converge. If _TYPE_ is STDERR, then the estimates are missing if covariance estimates
cannot be obtained.
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If you specify regression effects, then the estimate that is reported for the first parameter
of each distribution is the estimate of the base value of the scale or log-transformed
scale parameter. For more information, see the section “Estimating Regression Effects”
on page 283.

<Regression Effect 1> . . . <Regression Effect K>
If your effect specification in the SCALEMODEL statement results in K regression
effects, then the OUTEST= data set contains K regression variables. The name of each
variable is formed by using the name of the effect and the names of the levels of the
CLASS variables that the effect might contain. If the effect name or level names are
too long, then the variable name is constructed by using partial effect name and integer
identifiers for BY groups and CLASS variable levels. The label of the variable is more
descriptive than the name of the variable. The variables contain estimates for their
respective regression coefficients. If an effect is deemed to be linearly dependent on
other effects for a given BY group, then a warning message is written to the SAS log
and a special missing value of .R is written in the respective variable. If _TYPE_ is EST,
then the estimates are missing if the model does not converge. If _TYPE_ is STDERR,
then the estimates are missing if covariance estimates cannot be obtained.

<Offset Variable>
If you specify an OFFSET= variable in the SCALEMODEL statement, then the OUT-
EST= data set contains a variable that is named after the offset variable. If _TYPE_ is
EST, then the value of this variable is 1. If _TYPE_ is STDERR, then the value of this
variable is a special missing value of .F.

If you specify the COVOUT option in the PROC HPSEVERITY statement, then the OUTEST= data set
contains additional observations that contain the estimates of the covariance structure. Given the symmetric
nature of the covariance structure, only the lower triangular portion is reported. In addition to the variables
listed and described previously, the data set contains the following variables that are either new or have a
modified description:

_TYPE_ type of the estimates reported in this observation. For observations that contain rows of
the covariance structure, the value is COV.

_STATUS_ status of the reported estimates. For observations that contain rows of the covariance
structure, the status is 0 if covariance estimation was successful. If estimation fails, the
status is 1 and a single observation is reported with _TYPE_=COV and missing values for
all the parameter variables.

_NAME_ name of the parameter for the row of covariance matrix that is reported in the current
observation.

OUTMODELINFO= Data Set

The OUTMODELINFO= data set records the information about each candidate distribution that you specify
in the DIST statement. It contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information
about this distribution.

_DEPVAR_ name of the loss variable.
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_DESCRIPTION_ descriptive name of the model. This has a nonmissing value only if the DESCRIP-
TION function has been defined for this model.

_VALID_ validity of the distribution definition. This has a value of 1 for valid definitions
and a value of 0 for invalid definitions. If the definition is invalid, then PROC
HPSEVERITY writes the reason for invalidity to the SAS log.

_PARMNAME1 ... _PARMNAMEM
M variables that contain names of parameters of the distribution model, where M
is the maximum number of parameters across all the specified distribution models.
For a given distribution with m parameters, values of variables _PARMNAMEj
(j > m) are missing.

OUTSTAT= Data Set

The OUTSTAT= data set records statistics of fit and model selection information. If you specify BY variables,
then the data are organized in BY groups and the data set contains variables that you specify in the BY
statement. The data set contains the following variables:

_MODEL_ identifying name of the distribution model. The observation contains information
about this distribution.

_NMODELPARM_ number of parameters in the distribution.

_NESTPARM_ number of estimated parameters. This includes the regression parameters, if you
specify any regression effects.

_NOBS_ number of nonmissing observations used for parameter estimation.

_STATUS_ status of the parameter estimation process for this model. The possible values are
listed in the section “_STATUS_ Variable Values” on page 344.

_SELECTED_ indicator of the best distribution model. If the value is 1, then this model is the
best model for the current BY group according to the specified model selection
criterion. This value is missing if the parameter estimation process does not
converge for this model.

Neg2LogLike value of the log likelihood, multiplied by –2, that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AIC value of the Akaike’s information criterion (AIC) that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

AICC value of the corrected Akaike’s information criterion (AICC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

BIC value of the Schwarz Bayesian information criterion (BIC) that is attained at the
end of the parameter estimation process. This value is missing if the parameter
estimation process does not converge for this model.

KS value of the Kolmogorov-Smirnov (KS) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.
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AD value of the Anderson-Darling (AD) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

CVM value of the Craḿer-von Mises (CvM) statistic that is attained at the end of the
parameter estimation process. This value is missing if the parameter estimation
process does not converge for this model.

_STATUS_ Variable Values

The _STATUS_ variable in the OUTEST= and OUTSTAT= data sets contains a value that indicates the status
of the parameter estimation process for the respective distribution model. The variable can take the following
values in the OUTEST= data set for _TYPE_=EST observations and in the OUTSTAT= data set:

0 The parameter estimation process converged for this model.

301 The parameter estimation process might not have converged for this model because there is no
improvement in the objective function value. This might indicate that the initial values of the
parameters are optimal, or you can try different convergence criteria in the NLOPTIONS statement.

302 The parameter estimation process might not have converged for this model because the number of
iterations exceeded the maximum allowed value. You can try setting a larger value for the MAXITER=
options in the NLOPTIONS statement.

303 The parameter estimation process might not have converged for this model because the number of
objective function evaluations exceeded the maximum allowed value. You can try setting a larger
value for the MAXFUNC= options in the NLOPTIONS statement.

304 The parameter estimation process might not have converged for this model because the time taken
by the process exceeded the maximum allowed value. You can try setting a larger value for the
MAXTIME= option in the NLOPTIONS statement.

400 The parameter estimation process did not converge for this model.

The _STATUS_ variable can take the following values in the OUTEST= data set for _TYPE_=STDERR and
_TYPE_=COV observations:

0 The covariance and standard error estimates are available and valid.

1 The covariance and standard error estimates are not available, because the process of computing
covariance estimates failed.

Displayed Output
The HPSEVERITY procedure optionally produces displayed output by using the Output Delivery System
(ODS). All output is controlled by the PRINT= option in the PROC HPSEVERITY statement. Table 9.17
relates the ODS tables to PRINT= options.
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Table 9.17 ODS Tables Produced in PROC HPSEVERITY

ODS Table Name Description Option

AllFitStatistics Statistics of fit for all the dis-
tribution models

PRINT=ALLFITSTATS

ConvergenceStatus Convergence status of param-
eter estimation process

PRINT=CONVSTATUS

DescStats Descriptive statistics for the
response variable

PRINT=DESCSTATS

DistributionInfo Distribution information PRINT=DISTINFO
EstimationDetails Details of the estimation pro-

cess for all the distribution
models

PRINT=ESTIMATIONDETAILS

InitialValues Initial parameter values and
bounds

PRINT=INITIALVALUES

IterationHistory Optimization iteration history PRINT=NLOHISTORY
ModelSelection Model selection summary PRINT=SELECTION
OptimizationSummary Optimization summary PRINT=NLOSUMMARY
ParameterEstimates Final parameter estimates PRINT=ESTIMATES
PerformanceInfo Execution environment infor-

mation that pertains to the
computational performance

Default

RegDescStats Descriptive statistics for the
regression effects that do not
contain a CLASS variable

PRINT=DESCSTATS

StatisticsOfFit Statistics of fit PRINT=STATISTICS
Timing Timing information for vari-

ous computational stages of
the procedure

DETAILS (PERFOR-
MANCE statement)

TurnbullSummary Turnbull EDF estimation
summary

PRINT=ALL

If you do not specify the PRINT= option, then by default PROC HPSEVERITY produces ModelSelection,
PerformanceInfo, ConvergenceStatus, OptimizationSummary, StatisticsOfFit, and ParameterEstimates ODS
tables.

The following describes the content that each table displays:

AllFitStatistics (PRINT=ALLFITSTATS)
displays the comparison of all the statistics of fit for all the models in one table. The table does not
include the models whose parameter estimation process does not converge. If all the models fail to
converge, then this table is not produced. If the table contains more than one model, then the best
model according to each statistic is indicated with an asterisk (*) in that statistic’s column.

ConvergenceStatus (PRINT=CONVSTATUS)
displays the convergence status of the parameter estimation process.
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DescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the response variable.

DistributionInfo (PRINT=DISTINFO)
displays the information about all the candidate distribution. It includes the name, the description, the
number of distribution parameters, and whether the distribution is valid for the specified modeling task.

EstimationDetails (PRINT=ESTIMATIONDETAILS)
displays the comparative details of the estimation process that is used to fit each candidate distribution.
If you specify the DETAILS option in the PERFORMANCE statement, then this table contains a
column that indicates the time taken to estimate each candidate model.

InitialValues (PRINT=INITIALVALUES)
displays the initial values and bounds used for estimating each model.

IterationHistory (PRINT=NLOHISTORY)
displays the iteration history of the nonlinear optimization process used for estimating the parameters.

ModelSelection (PRINT=SELECTION)
displays the model selection table. The table shows the convergence status of each candidate model,
and the value of the selection criterion along with an indication of the selected model.

OptimizationSummary (PRINT=NLOSUMMARY)
displays the summary of the nonlinear optimization process used for estimating the parameters.

ParameterEstimates (PRINT=ESTIMATES)
displays the final estimates of parameters. The estimates are not displayed for models whose parameter
estimation process does not converge.

PerformanceInfo
displays information about the execution mode. For single-machine mode, the table displays the
number of threads that are used. For distributed mode, the table displays the grid mode (symmetric or
asymmetric), the number of compute nodes, and the number of threads per node. PROC HPSEVERITY
produces this table by default.

RegDescStats (PRINT=DESCSTATS)
displays the descriptive statistics for the regression effects in the SCALEMODEL statement that do
not contain a CLASS variable.

StatisticsOfFit (PRINT=STATISTICS)
displays the statistics of fit for each model. The statistics of fit are not displayed for models whose
parameter estimation process does not converge.

Timing (DETAILS option in the PERFORMANCE statement
displays elapsed times (absolute and relative) for the main tasks of the procedure. PROC HPSEVERITY
produces this table when you specify the DETAILS option in the PERFORMANCE statement,

TurnbullSummary (PRINT=ALL)
displays the summary of Turnbull’s estimation process if Turnbull’s method is used for computing
EDF estimates. The summary includes whether the nonlinear optimization converged, the number of
iterations, the maximum absolute relative error, the maximum absolute reduced gradient, and whether
the final estimates are maximum likelihood estimates. This table is produced only if you specify
PRINT=ALL and Turnbull’s method is used for computing EDF estimates.
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS” (SAS/STAT User’s Guide),

Before you create graphs, ODS Graphics must be enabled (for example, by using the ODS GRAPHICS ON
statement). For more information, see the section “Enabling and Disabling ODS Graphics” (Chapter 21,
SAS/STAT User’s Guide).

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” (Chapter 21, SAS/STAT User’s
Guide).

This section describes how the HPSEVERITY procedure uses ODS to create graphics.

NOTE: The graphics are created only when you run PROC HPSEVERITY in single-machine mode.

ODS Graph Names

PROC HPSEVERITY assigns a name to each graph that it creates by using ODS. You can use these names to
selectively reference the graphs. The names are listed in Table 9.18.

Table 9.18 ODS Graphics Produced by PROC HPSEVERITY

ODS Graph Name Plot Description PLOTS= Option

CDFPlot Comparative CDF plot CDF
CDFDistPlot CDF plot per distribution CDFPERDIST
PDFPlot Comparative PDF plot PDF
PDFDistPlot PDF plot per distribution PDFPERDIST
PPPlot P-P plot of CDF and EDF PP
QQPlot Q-Q plot QQ

Comparative CDF Plot

The comparative CDF plot helps you visually compare the cumulative distribution function (CDF) estimates
of all the candidate distribution models and the empirical distribution function (EDF) estimate. The plot does
not contain CDF estimates for models whose parameter estimation process does not converge. The horizontal
axis represents the values of the response variable. The vertical axis represents the values of the CDF or EDF
estimates.

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 279.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 287.
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CDF Plot per Distribution

The CDF plot per distribution shows the CDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The plot also contains estimates of the EDF. The
horizontal axis represents the values of the response variable. The vertical axis represents the values of the
CDF or EDF estimates.

This plot shows the lower and upper pointwise confidence limits for the EDF estimates. For an EDF estimate
Fn with standard error �n, they are computed as MAX.0; Fn � z.1�˛=2/�n/ and MIN.1; Fn C z.1�˛=2/�n/,
respectively, where zp is the pth quantile from the standard normal distribution and ˛ denotes the confidence
level that you specify in the EDFALPHA= option (the default is ˛ D 0:05).

If you specify truncation, then conditional CDF estimates are plotted. Otherwise, unconditional CDF
estimates are plotted. The conditional estimates are computed by using the method that is described in the
section “Truncation and Conditional CDF Estimates” on page 279.

If you specify regression effects, then the plotted CDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 287.

Comparative PDF Plot

The comparative PDF plot helps you visually compare the probability density function (PDF) estimates of all
the candidate distribution models. The plot does not contain PDF estimates for models whose parameter
estimation process does not converge. The horizontal axis represents the values of the response variable. The
vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 287.

PDF Plot per Distribution

The PDF plot per distribution shows the PDF estimates of each candidate distribution model unless that
model’s parameter estimation process does not converge. The horizontal axis represents the values of the
response variable. The vertical axis represents the values of the PDF estimates.

If you specify the HISTOGRAM option, then the plot also contains the histogram of response variable values.
If you specify the KERNEL option, then the plot also contains the kernel density estimate of the response
variable values.

If you specify regression effects, then the plotted PDF estimates are from a mixture distribution. For more
information, see the section “CDF and PDF Estimates with Regression Effects” on page 287.

P-P Plot of CDF and EDF

The P-P plot of CDF and EDF is the probability-probability plot that compares the CDF estimates of a
distribution to the EDF estimates. A plot is not prepared for models whose parameter estimation process does
not converge. The horizontal axis represents the CDF estimates of a candidate distribution, and the vertical
axis represents the EDF estimates.

This plot can be interpreted as displaying the data that are used for computing the EDF-based statistics of fit
for the given candidate distribution. As described in the section “EDF-Based Statistics” on page 305, these
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statistics are computed by comparing the EDF, denoted by Fn.y/, to the CDF, denoted by F.y/, at each
of the response variable values y. Using the probability inverse transform z D F.y/, this is equivalent to
comparing the EDF of the z, denoted by Fn.z/, to the CDF of z, denoted by F.z/ (D’Agostino and Stephens
1986, Ch. 4). Because the CDF of z is a uniform distribution (F.z/ D z), the EDF-based statistics can be
computed by comparing the EDF estimate of z to the estimate of z. The horizontal axis of the plot represents
the estimated CDF Oz D OF .y/. The vertical axis represents the estimated EDF of z, OFn.z/. The plot contains
a scatter plot of ( Oz, OFn.z/) points and a reference line Fn.z/ D z that represents the expected uniform
distribution of z. Points that are scattered closer to the reference line indicate a better fit than the points that
are scattered farther away from the reference line.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 303. So conditional estimates of CDF are displayed, which are computed by using
the method that is described in the section “Truncation and Conditional CDF Estimates” on page 279.

If you specify regression effects, then the displayed CDF estimates, both unconditional and conditional, are
from a mixture distribution. For more information, see the section “CDF and PDF Estimates with Regression
Effects” on page 287.

Q-Q Plot

The Q-Q plot is a quantile-quantile scatter plot that compares the empirical quantiles to the quantiles from
a candidate distribution. A plot is not prepared for models whose parameter estimation process does not
converge. The horizontal axis represents the quantiles from a candidate distribution, and the vertical axis
represents the empirical quantiles.

Each point in the plot corresponds to a specific value of the EDF estimate, Fn. The Y coordinate is the value
of the response variable for which Fn is computed. The X coordinate is computed by using one of the two
following methods for a candidate distribution named dist:

• If you have defined the dist_QUANTILE function that satisfies the requirements listed in the section
“dist_QUANTILE” on page 319, then that function is invoked by using Fn and estimated distribution
parameters as arguments. The QUANTILE function is defined in the Sashelp.Svrtdist library for all
the predefined distributions.

• If the dist_QUANTILE function is not defined, then PROC HPSEVERITY numerically inverts the
dist_CDF function at the CDF value of Fn for the estimated distribution parameters. If the dist_CDF
function is not defined, then the exp(dist_LOGCDF) function is inverted. If the inversion fails, the
corresponding point is not plotted in the Q-Q plot.

If you specify truncation, then the EDF estimates are conditional, as described in the section “EDF Estimates
and Truncation” on page 303. The CDF inversion process, whether done numerically or by evaluating the
dist_QUANTILE function, needs to accept an unconditional CDF value. So the Fn value is first transformed
to an unconditional estimate F un as

F un D Fn � .
OF .trmax/ �

OF .t lmin//C
OF .t lmin/

where OF .trmax/ and OF .t lmin/ are as defined in the section “Truncation and Conditional CDF Estimates” on
page 279.

If you specify regression effects, then the value of the first distribution parameter is determined by using the
DFMIXTURE=MEAN method that is described in the section “CDF and PDF Estimates with Regression
Effects” on page 287.
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Examples: HPSEVERITY Procedure

Example 9.1: Defining a Model for Gaussian Distribution
Suppose you want to fit a distribution model other than one of the predefined ones available to you. Suppose
you want to define a model for the Gaussian distribution with the following typical parameterization of the
PDF (f ) and CDF (F):
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For PROC HPSEVERITY, a distribution model consists of a set of functions and subroutines that are defined
with the FCMP procedure. Each function and subroutine should be written following certain rules. For more
information, see the section “Defining a Severity Distribution Model with the FCMP Procedure” on page 311.

NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the process of defining your own distribution models. Although the distribution has
a support over the entire real line, you can fit the distribution with PROC HPSEVERITY only if the input
sample contains nonnegative values.

The following SAS statements define a distribution model named NORMAL for the Gaussian distribution.
The OUTLIB= option in the PROC FCMP statement stores the compiled versions of the functions and
subroutines in the ‘models’ package of the Work.Sevexmpl library. The LIBRARY= option in the PROC
FCMP statement enables this PROC FCMP step to use the SVRTUTIL_RAWMOMENTS utility subroutine
that is available in the Sashelp.Svrtdist library. The subroutine is described in the section “Predefined Utility
Functions” on page 323.

/*-------- Define Normal Distribution with PROC FCMP ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function normal_pdf(x,Mu,Sigma);
/* Mu : Location */
/* Sigma : Standard Deviation */
return ( exp(-(x-Mu)**2/(2 * Sigma**2)) /

(Sigma * sqrt(2*constant('PI'))) );
endsub;

function normal_cdf(x,Mu,Sigma);
/* Mu : Location */
/* Sigma : Standard Deviation */
z = (x-Mu)/Sigma;
return (0.5 + 0.5*erf(z/sqrt(2)));

endsub;

subroutine normal_parminit(dim, x[*], nx[*], F[*], Ftype, Mu, Sigma);
outargs Mu, Sigma;
array m[2] / nosymbols;
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/* Compute estimates by using method of moments */
call svrtutil_rawmoments(dim, x, nx, 2, m);
Mu = m[1];
Sigma = sqrt(m[2] - m[1]**2);

endsub;

subroutine normal_lowerbounds(Mu, Sigma);
outargs Mu, Sigma;
Mu = .; /* Mu has no lower bound */
Sigma = 0; /* Sigma > 0 */

endsub;
quit;

The statements define the two functions required of any distribution model (NORMAL_PDF and NOR-
MAL_CDF) and two optional subroutines (NORMAL_PARMINIT and NORMAL_LOWERBOUNDS). The
name of each function or subroutine must follow a specific structure. It should start with the model’s short or
identifying name, which is ‘NORMAL’ in this case, followed by an underscore ‘_’, followed by a keyword
suffix such as ‘PDF’. Each function or subroutine has a specific purpose. For more information about all the
functions and subroutines that you can define for a distribution model, see the section “Defining a Severity
Distribution Model with the FCMP Procedure” on page 311. Following is the description of each function
and subroutine defined in this example:

• The PDF and CDF suffixes define functions that return the probability density function and cumulative
distribution function values, respectively, given the values of the random variable and the distribution
parameters.

• The PARMINIT suffix defines a subroutine that returns the initial values for the parameters by using the
sample data or the empirical distribution function (EDF) estimate computed from it. In this example,
the parameters are initialized by using the method of moments. Hence, you do not need to use the EDF
estimates, which are available in the F array. The first two raw moments of the Gaussian distribution
are as follows:

EŒx� D �; EŒx2� D �2 C �2

Given the sample estimates, m1 and m2, of these two raw moments, you can solve the equations
EŒx� D m1 and EŒx2� D m2 to get the following estimates for the parameters: O� D m1 and

O� D

q
m2 �m

2
1. The NORMAL_PARMINIT subroutine implements this solution. It uses the

SVRTUTIL_RAWMOMENTS utility subroutine to compute the first two raw moments.

• The LOWERBOUNDS suffix defines a subroutine that returns the lower bounds on the parameters.
PROC HPSEVERITY assumes a default lower bound of 0 for all the parameters when a LOWER-
BOUNDS subroutine is not defined. For the parameter � (Mu), there is no lower bound, so you
need to define the NORMAL_LOWERBOUNDS subroutine. It is recommended that you assign
bounds for all the parameters when you define the LOWERBOUNDS subroutine or its counterpart,
the UPPERBOUNDS subroutine. Any unassigned value is returned as a missing value, which PROC
HPSEVERITY interprets to mean that the parameter is unbounded, and that might not be what you
want.

You can now use this distribution model with PROC HPSEVERITY. Let the following DATA step statements
simulate a normal sample with � D 10 and � D 2:5:
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/*-------- Simulate a Normal sample ----------*/
data testnorm(keep=y);

call streaminit(12345);
do i=1 to 100;

y = rand('NORMAL', 10, 2.5);
output;

end;
run;

Prior to using your distribution with PROC HPSEVERITY, you must communicate the location of the library
that contains the definition of the distribution and the locations of libraries that contain any functions and
subroutines used by your distribution model. The following OPTIONS statement sets the CMPLIB= system
option to include the FCMP library Work.Sevexmpl in the search path used by PROC HPSEVERITY to find
FCMP functions and subroutines.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

Now, you are ready to fit the NORMAL distribution model with PROC HPSEVERITY. The following
statements fit the model to the values of Y in the Work.Testnorm data set:

/*--- Fit models with PROC HPSEVERITY ---*/
proc hpseverity data=testnorm print=all;

loss y;
dist Normal;

run;

The DIST statement specifies the identifying name of the distribution model, which is ‘NORMAL’. Neither
the INEST= option nor the INSTORE= option is specified in the PROC HPSEVERITY statement, and the
INIT= option is not specified in the DIST statement. So PROC HPSEVERITY initializes the parameters by
invoking the NORMAL_PARMINIT subroutine.

Some of the results prepared by the preceding PROC HPSEVERITY step are shown in Output 9.1.1 and
Output 9.1.2. The descriptive statistics of variable Y and the “Model Selection” table, which includes just the
normal distribution, are shown in Output 9.1.1.

Output 9.1.1 Summary of Results for Fitting the Normal Distribution

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TESTNORM

Descriptive Statistics for y

Observations 100

Observations Used for Estimation 100

Minimum 3.88249

Maximum 16.00864

Mean 10.02059

Standard Deviation 2.37730
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Output 9.1.1 continued

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal Yes 455.97541 Yes

The initial values for the parameters, the optimization summary, and the final parameter estimates are shown
in Output 9.1.2. No iterations are required to arrive at the final parameter estimates, which are identical to the
initial values. This confirms the fact that the maximum likelihood estimates for the Gaussian distribution are
identical to the estimates obtained by the method of moments that was used to initialize the parameters in the
NORMAL_PARMINIT subroutine.

Output 9.1.2 Details of the Fitted Normal Distribution Model

The HPSEVERITY Procedure
Normal Distribution

The HPSEVERITY Procedure
Normal Distribution

Distribution Information

Name Normal

Distribution Parameters 2

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 10.02059 -Infty Infty

Sigma 2.36538 1.05367E-8 Infty

Optimization Summary

Optimization Technique Trust Region

Iterations 0

Function Calls 4

Log Likelihood -227.98770

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 10.02059 0.23894 41.94 <.0001

Sigma 2.36538 0.16896 14.00 <.0001

The NORMAL distribution defined and illustrated here has no scale parameter, because all the following
inequalities are true:
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This implies that you cannot estimate the influence of regression effects on a model for the response variable
based on this distribution.
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Example 9.2: Defining a Model for the Gaussian Distribution with a Scale
Parameter

If you want to estimate the influence of regression effects, then the model needs to be parameterized to have
a scale parameter. Although this might not be always possible, it is possible for the Gaussian distribution by
replacing the location parameter � with another parameter, ˛ D �=� , and defining the PDF (f ) and the CDF
(F) as follows:
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You can verify that � is the scale parameter, because both of the following equalities are true:

f .xI �; ˛/ D
1

�
f .
x

�
I 1; ˛/

F.xI �; ˛/ D F.
x

�
I 1; ˛/

NOTE: The Gaussian distribution is not a commonly used severity distribution. It is used in this example
primarily to illustrate the concept of parameterizing a distribution such that it has a scale parameter. Although
the distribution has a support over the entire real line, you can fit the distribution with PROC HPSEVERITY
only if the input sample contains nonnegative values.

The following statements use the alternate parameterization to define a new model named NORMAL_S. The
definition is stored in the Work.Sevexmpl library.

/*-------- Define Normal Distribution With Scale Parameter ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function normal_s_pdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation */
/* Alpha : Scaled mean */
return ( exp(-(x/Sigma - Alpha)**2/2) /

(Sigma * sqrt(2*constant('PI'))) );
endsub;

function normal_s_cdf(x, Sigma, Alpha);
/* Sigma : Scale & Standard Deviation */
/* Alpha : Scaled mean */
z = x/Sigma - Alpha;
return (0.5 + 0.5*erf(z/sqrt(2)));

endsub;

subroutine normal_s_parminit(dim, x[*], nx[*], F[*], Ftype, Sigma, Alpha);
outargs Sigma, Alpha;
array m[2] / nosymbols;
/* Compute estimates by using method of moments */
call svrtutil_rawmoments(dim, x, nx, 2, m);
Sigma = sqrt(m[2] - m[1]**2);
Alpha = m[1]/Sigma;

endsub;
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subroutine normal_s_lowerbounds(Sigma, Alpha);
outargs Sigma, Alpha;
Alpha = .; /* Alpha has no lower bound */
Sigma = 0; /* Sigma > 0 */

endsub;
quit;

An important point to note is that the scale parameter Sigma is the first distribution parameter (after the
‘x’ argument) listed in the signatures of NORMAL_S_PDF and NORMAL_S_CDF functions. Sigma is
also the first distribution parameter listed in the signatures of other subroutines. This is required by PROC
HPSEVERITY, so that it can identify which is the scale parameter. When you specify regression effects,
PROC HPSEVERITY checks whether the first parameter of each candidate distribution is a scale parameter
(or a log-transformed scale parameter if dist_SCALETRANSFORM subroutine is defined for the distribution
with LOG as the transform). If it is not, then an appropriate message is written the SAS log and that
distribution is not fitted.

Let the following DATA step statements simulate a sample from the normal distribution where the parameter
� is affected by the regressors as follows:

� D exp.1C 0:5 X1C 0:75 X3 � 2 X4C X5/

The sample is simulated such that the regressor X2 is linearly dependent on regressors X1 and X3.

/*--- Simulate a Normal sample affected by Regressors ---*/
data testnorm_reg(keep=y x1-x5 Sigma);

array x{*} x1-x5;
array b{6} _TEMPORARY_ (1 0.5 . 0.75 -2 1);
call streaminit(34567);
label y='Normal Response Influenced by Regressors';

do n = 1 to 100;
/* simulate regressors */
do i = 1 to dim(x);

x(i) = rand('UNIFORM');
end;
/* make x2 linearly dependent on x1 */
x(2) = 5 * x(1);

/* compute log of the scale parameter */
logSigma = b(1);
do i = 1 to dim(x);

if (i ne 2) then
logSigma = logSigma + b(i+1) * x(i);

end;

Sigma = exp(logSigma);
y = rand('NORMAL', 25, Sigma);
output;

end;
run;

The following statements use PROC HPSEVERITY to fit the NORMAL_S distribution model along with
some of the predefined distributions to the simulated sample:
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/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit models with PROC HPSEVERITY --------*/
proc hpseverity data=testnorm_reg print=all;

loss y;
scalemodel x1-x5;
dist Normal_s burr logn pareto weibull;

run;

The “Model Selection” table in Output 9.2.1 indicates that all the models, except the Burr distribution model,
have converged. Also, only three models, Normal_s, Burr, and Weibull, seem to have a good fit for the
data. The table that compares all the fit statistics indicates that Normal_s model is the best according to the
likelihood-based statistics; however, the Burr model is the best according to the EDF-based statistics.

Output 9.2.1 Summary of Results for Fitting the Normal Distribution with Regressors

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TESTNORM_REG

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal_s Yes 603.95786 Yes

Burr Maybe 612.81685 No

Logn Yes 749.20125 No

Pareto Yes 841.07022 No

Weibull Yes 612.77496 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD

Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152

Burr 612.81685 626.81685 628.03424 645.05304 1.50448 * 3.90072 *

Logn 749.20125 761.20125 762.10448 776.83227 2.88110 16.20558

Pareto 841.07022 853.07022 853.97345 868.70124 4.83810 31.60568

Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution CvM

Normal_s 0.70769

Burr 0.63399 *

Logn 3.04825

Pareto 6.84046

Weibull 0.63458

Note: The asterisk (*)
marks the best model

according to each
column's criterion.



Example 9.2: Defining a Model for the Gaussian Distribution with a Scale Parameter F 357

This prompts you to further evaluate why the model with Burr distribution has not converged. The initial
values, convergence status, and the optimization summary for the Burr distribution are shown in Output 9.2.2.
The initial values table indicates that the regressor X2 is redundant, which is expected. More importantly, the
convergence status indicates that it requires more than 50 iterations. PROC HPSEVERITY enables you to
change several settings of the optimizer by using the NLOPTIONS statement. In this case, you can increase
the limit of 50 on the iterations, change the convergence criterion, or change the technique to something other
than the default trust-region technique.

Output 9.2.2 Details of the Fitted Burr Distribution Model

The HPSEVERITY Procedure
Burr Distribution

The HPSEVERITY Procedure
Burr Distribution

Distribution Information

Name Burr

Description Burr Distribution

Distribution Parameters 3

Regression Parameters 4

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Theta 25.75198 1.05367E-8 Infty

Alpha 2.00000 1.05367E-8 Infty

Gamma 2.00000 1.05367E-8 Infty

x1 0.07345 -709.78271 709.78271

x2 Redundant

x3 -0.14056 -709.78271 709.78271

x4 0.27064 -709.78271 709.78271

x5 -0.23230 -709.78271 709.78271

Convergence Status

Needs more than 50 iterations.

Optimization Summary

Optimization Technique Trust Region

Iterations 50

Function Calls 137

Log Likelihood -306.40842

The following PROC HPSEVERITY step uses the NLOPTIONS statement to change the convergence crite-
rion and the limits on the iterations and function evaluations, exclude the lognormal and Pareto distributions
that have been confirmed previously to fit the data poorly, and exclude the redundant regressor X2 from the
model:

/*--- Refit and compare models with higher limit on iterations ---*/
proc hpseverity data=testnorm_reg print=all;

loss y;
scalemodel x1 x3-x5;
dist Normal_s burr weibull;
nloptions absfconv=2.0e-5 maxiter=100 maxfunc=500;

run;
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The results shown in Output 9.2.3 indicate that the Burr distribution has now converged and that the Burr and
Weibull distributions have an almost identical fit for the data. The NORMAL_S distribution is still the best
distribution according to the likelihood-based criteria.

Output 9.2.3 Summary of Results after Changing Maximum Number of Iterations

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TESTNORM_REG

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

Normal_s Yes 603.95786 Yes

Burr Yes 612.79276 No

Weibull Yes 612.77496 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD

Normal_s 603.95786 * 615.95786 * 616.86108 * 631.58888 * 1.52388 4.00152

Burr 612.79276 626.79276 628.01015 645.02895 1.50472 * 3.90351 *

Weibull 612.77496 624.77496 625.67819 640.40598 1.50490 3.90559

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution CvM

Normal_s 0.70769

Burr 0.63433 *

Weibull 0.63458

Note: The asterisk (*)
marks the best model

according to each
column's criterion.

Example 9.3: Defining a Model for Mixed-Tail Distributions
In some applications, a few severity values tend to be extreme as compared to the typical values. The extreme
values represent the worst case scenarios and cannot be discarded as outliers. Instead, their distribution
must be modeled to prepare for their occurrences. In such cases, it is often useful to fit one distribution to
the non-extreme values and another distribution to the extreme values. The mixed-tail distribution mixes
two distributions: one for the body region, which contains the non-extreme values, and another for the tail
region, which contains the extreme values. The tail distribution is usually a generalized Pareto distribution
(GPD), because it is usually good for modeling the conditional excess severity above a threshold. The body
distribution can be any distribution. The following definitions are used in describing a generic formulation of
a mixed-tail distribution:

g.x/ PDF of the body distribution

G.x/ CDF of the body distribution
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h.x/ PDF of the tail distribution

H.x/ CDF of the tail distribution

� scale parameter for the body distribution

� set of nonscale parameters for the body distribution

� shape parameter for the GPD tail distribution

xr normalized value of the response variable at which the tail starts

pn mixing probability

Given these notations, the PDF f .x/ and the CDF F.x/ of the mixed-tail distribution are defined as

f .x/ D

� pn
G.xb/

g.x/ if x � xb
.1 � pn/h.x � xb/ if x > xb

F.x/ D

� pn
G.xb/

G.x/ if x � xb
pn C .1 � pn/H.x � xb/ if x > xb

where xb D �xr is the value of the response variable at which the tail starts.

These definitions indicate the following:

• The body distribution is conditional on X � xb , where X denotes the random response variable.

• The tail distribution is the generalized Pareto distribution of the .X � xb/ values.

• The probability that a response variable value belongs to the body is pn. Consequently the probability
that the value belongs to the tail is .1 � pn/.

The parameters of this distribution are � , �, �, xr , and pn. The scale of the GPD tail distribution �t is
computed as

�t D
G.xbI �;�/

g.xbI �;�/

.1 � pn/

pn
D �

G.xr I � D 1;�/

g.xr I � D 1;�/

.1 � pn/

pn

The parameter xr is usually estimated using a tail index estimation algorithm. One such algorithm is
the Hill’s algorithm (Danielsson et al. 2001), which is implemented by the predefined utility function
SVRTUTIL_HILLCUTOFF available to you in the Sashelp.Svrtdist library. The algorithm and the utility
function are described in detail in the section “Predefined Utility Functions” on page 323. The function
computes an estimate of xb , which can be used to compute an estimate of xr because xr D xb= O� , where O� is
the estimate of the scale parameter of the body distribution.

The parameter pn is usually determined by the domain expert based on the fraction of losses that are expected
to belong to the tail.

The following SAS statements define the LOGNGPD distribution model for a mixed-tail distribution with the
lognormal distribution as the body distribution and GPD as the tail distribution:
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/*------- Define Lognormal Body-GPD Tail Mixed Distribution -------*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function LOGNGPD_DESCRIPTION() $256;
length desc $256;
desc1 = "Lognormal Body-GPD Tail Distribution.";
desc2 = " Mu, Sigma, and Xi are free parameters.";
desc3 = " Xr and Pn are constant parameters.";
desc = desc1 || desc2 || desc3;
return(desc);

endsub;

function LOGNGPD_SCALETRANSFORM() $3;
length xform $3;
xform = "LOG";
return (xform);

endsub;

subroutine LOGNGPD_CONSTANTPARM(Xr,Pn);
endsub;

function LOGNGPD_PDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then do;

return ((Pn/p)*PDF('LOGN', x, Mu, Sigma));
end;
else do;

gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
h = (1+Xi*(x-cutoff)/gpd_scale)**(-1-(1/Xi))/gpd_scale;
return ((1-Pn)*h);

end;
endsub;

function LOGNGPD_CDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then do;

return ((Pn/p)*CDF('LOGN', x, Mu, Sigma));
end;
else do;

gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
H = 1 - (1 + Xi*((x-cutoff)/gpd_scale))**(-1/Xi);
return (Pn + (1-Pn)*H);

end;
endsub;

subroutine LOGNGPD_PARMINIT(dim,x[*],nx[*],F[*],Ftype,
Mu,Sigma,Xi,Xr,Pn);

outargs Mu,Sigma,Xi,Xr,Pn;
array xe[1] / nosymbols;
array nxe[1] / nosymbols;

eps = constant('MACEPS');
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Pn = 0.8; /* Set mixing probability */
_status_ = .;
call streaminit(56789);
Xb = svrtutil_hillcutoff(dim, x, 100, 25, _status_);
if (missing(_status_) or _status_ = 1) then

Xb = svrtutil_percentile(Pn, dim, x, F, Ftype);

/* prepare arrays for excess values */
i = 1;
do while (i <= dim and x[i] < Xb+eps);

i = i + 1;
end;
dime = dim-i+1;
call dynamic_array(xe, dime);
call dynamic_array(nxe, dime);
j = 1;
do while(i <= dim);

xe[j] = x[i] - Xb;
nxe[j] = nx[i];
i = i + 1;
j = j + 1;

end;

/* Initialize lognormal parameters */
call logn_parminit(dim, x, nx, F, Ftype, Mu, Sigma);
if (not(missing(Mu))) then

Xr = Xb/exp(Mu);
else

Xr = .;

/* Initialize GPD's shape parameter using excess values */
call gpd_parminit(dime, xe, nxe, F, Ftype, theta_gpd, Xi);

endsub;

subroutine LOGNGPD_LOWERBOUNDS(Mu,Sigma,Xi,Xr,Pn);
outargs Mu,Sigma,Xi,Xr,Pn;

Mu = .; /* Mu has no lower bound */
Sigma = 0; /* Sigma > 0 */
Xi = 0; /* Xi > 0 */

endsub;
quit;

Note the following points about the LOGNGPD definition:

• The parameters xr and pn are not estimated with the maximum likelihood method used by
PROC HPSEVERITY, so you need to specify them as constant parameters by defining the
dist_CONSTANTPARM subroutine. The signature of LOGNGPD_CONSTANTPARM subroutine
lists only the constant parameters Xr and Pn.

• The parameter xr is estimated by first using the SVRTUTIL_HILLCUTOFF utility function to compute
an estimate of the cutoff point Oxb and then computing xr D Oxb=e O�. If SVRTUTIL_HILLCUTOFF
fails to compute a valid estimate, then the SVRTUTIL_PERCENTILE utility function is used to set Oxb
to the pnth percentile of the data. The parameter pn is fixed to 0.8.
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• The Sashelp.Svrtdist library is specified with the LIBRARY= option in the PROC FCMP state-
ment to enable the LOGNGPD_PARMINIT subroutine to use the predefined utility functions (SVR-
TUTIL_HILLCUTOFF and SVRTUTIL_PERCENTILE) and parameter initialization subroutines
(LOGN_PARMINIT and GPD_PARMINIT).

• The LOGNGPD_LOWERBOUNDS subroutine defines the lower bounds for all parameters. This
subroutine is required because the parameter Mu has a non-default lower bound. The bounds for Sigma
and Xi must be specified. If they are not specified, they are returned as missing values, which PROC
HPSEVERITY interprets as having no lower bound. You need not specify any bounds for the constant
parameters Xr and Pn, because they are not subject to optimization.

The following DATA step statements simulate a sample from a mixed-tail distribution with a lognormal
body and GPD tail. The parameter pn is fixed to 0.8, the same value used in the LOGNGPD_PARMINIT
subroutine defined previously.

/*----- Simulate a sample for the mixed-tail distribution -----*/
data testmixdist(keep=y label='Lognormal Body-GPD Tail Sample');

call streaminit(45678);
label y='Response Variable';
N = 100;
Mu = 1.5;
Sigma = 0.25;
Xi = 1.5;
Pn = 0.8;

/* Generate data comprising the lognormal body */
Nbody = N*Pn;
do i=1 to Nbody;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;

/* Generate data comprising the GPD tail */
cutoff = quantile('LOGNORMAL', Pn, Mu, Sigma);
gpd_scale = (1-Pn) / pdf('LOGNORMAL', cutoff, Mu, Sigma);
do i=Nbody+1 to N;

y = cutoff + ((1-rand('UNIFORM'))**(-Xi) - 1)*gpd_scale/Xi;
output;

end;
run;

The following statements use PROC HPSEVERITY to fit the LOGNGPD distribution model to the simulated
sample. They also fit three other predefined distributions (BURR, LOGN, and GPD). The final parameter
estimates are written to the Work.Parmest data set.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);
/*-------- Fit LOGNGPD model with PROC HPSEVERITY --------*/
proc hpseverity data=testmixdist print=all outest=parmest;

loss y;
dist logngpd burr logn gpd;

run;
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Some of the results prepared by PROC HPSEVERITY are shown in Output 9.3.1 and Output 9.3.2. The
“Model Selection” table in Output 9.3.1 indicates that all models converged. The last table in Output 9.3.1
shows that the model with LOGNGPD distribution has the best fit according to almost all the statistics of
fit. The Burr distribution model is the closest contender to the LOGNGPD model, but the GPD distribution
model fits the data very poorly.

Output 9.3.1 Summary of Fitting Mixed-Tail Distribution

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TESTMIXDIST

Label Lognormal Body-GPD Tail Sample

Model Selection

Distribution Converged
-2 Log

Likelihood Selected

logngpd Yes 418.78232 Yes

Burr Yes 424.93728 No

Logn Yes 459.43471 No

Gpd Yes 558.13444 No

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD

logngpd 418.78232 * 428.78232 * 429.42062 * 441.80817 0.62140 * 0.31670 *

Burr 424.93728 430.93728 431.18728 438.75280 * 0.71373 0.57649

Logn 459.43471 463.43471 463.55842 468.64505 1.55267 3.27122

Gpd 558.13444 562.13444 562.25815 567.34478 3.43470 16.74156

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution CvM

logngpd 0.04972 *

Burr 0.07860

Logn 0.48448

Gpd 3.31860

Note: The asterisk (*)
marks the best model

according to each
column's criterion.

The detailed results for the LOGNGPD distribution are shown in Output 9.3.2. The initial values table
indicates the values computed by LOGNGPD_PARMINIT subroutine for the Xr and Pn parameters. It also
uses the bounds columns to indicate the constant parameters. The last table in the figure shows the final
parameter estimates. The estimates of all free parameters are significantly different from 0. As expected, the
final estimates of the constant parameters Xr and Pn have not changed from their initial values.
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Output 9.3.2 Detailed Results for the LOGNGPD Distribution

The HPSEVERITY Procedure
logngpd Distribution

The HPSEVERITY Procedure
logngpd Distribution

Distribution Information

Name logngpd

Description Lognormal Body-GPD Tail Distribution. Mu, Sigma, and Xi are free parameters. Xr and Pn are constant
parameters.

Distribution
Parameters

5

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 1.49954 -Infty Infty

Sigma 0.76306 1.05367E-8 Infty

Xi 0.36661 1.05367E-8 Infty

Xr 1.27395 Constant Constant

Pn 0.80000 Constant Constant

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 11

Function Calls 33

Failed Function Calls 1

Log Likelihood -209.39116

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 1.57921 0.06426 24.57 <.0001

Sigma 0.31868 0.04459 7.15 <.0001

Xi 1.03771 0.38205 2.72 0.0078

Xr 1.27395 Constant . .

Pn 0.80000 Constant . .

The following SAS statements use the parameter estimates to compute the value where the tail region is
estimated to start (xb D e O� Oxr ) and the scale of the GPD tail distribution (�t D

G.xb/
g.xb/

.1�pn/
pn

):

/*-------- Compute tail cutoff and tail distribution's scale --------*/
data xb_thetat(keep=x_b theta_t);

set parmest(where=(_MODEL_='logngpd' and _TYPE_='EST'));
x_b = exp(Mu) * Xr;
theta_t = (CDF('LOGN',x_b,Mu,Sigma)/PDF('LOGN',x_b,Mu,Sigma)) *

((1-Pn)/Pn);
run;

proc print data=xb_thetat noobs;
run;
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Output 9.3.3 Start of the Tail and Scale of the GPD Tail Distribution

x_b theta_t

6.18005 1.27865

The computed values of xb and �t are shown as x_b and theta_t in Output 9.3.3. Equipped with this additional
derived information, you can now interpret the results of fitting the mixed-tail distribution as follows:

• The tail starts at y � 6:18. The primary benefit of using the scale-normalized cutoff (xr ) as the
constant parameter instead of using the actual cutoff (xb) is that the absolute cutoff is optimized by
virtue of optimizing the scale of the body region (� D e�).

• The values y � 6:18 follow the lognormal distribution with parameters � � 1:58 and � � 0:32.
These parameter estimates are reasonably close to the parameters used for simulating the sample.

• The values yt D y � 6:18 (yt > 0) follow the GPD distribution with scale �t � 1:28 and shape
� � 1:04.

Example 9.4: Fitting a Scaled Tweedie Model with Regressors
The Tweedie distribution is often used in the insurance industry to explain the influence of regression effects
on the distribution of losses. PROC HPSEVERITY provides a predefined scaled Tweedie distribution
(STWEEDIE) that enables you to model the influence of regression effects on the scale parameter. The
scale regression model has its own advantages such as the ability to easily account for inflation effects. This
example illustrates how that model can be used to evaluate the influence of regression effects on the mean of
the Tweedie distribution, which is useful in problems such rate-making and pure premium modeling.

Assume a Tweedie process, whose mean � is affected by k regression effects xj , j D 1; : : : ; k as follows:

� D �0 exp

0@ kX
jD1

ˇjxj

1A
where �0 represents the base value of the mean (you can think of �0 as exp.ˇ0/, where ˇ0 is the intercept).
This model for the mean is identical to the popular generalized linear model for the mean with a logarithmic
link function.

More interestingly, it parallels the model used by PROC HPSEVERITY for the scale parameter � ,

� D �0 exp

0@ kX
jD1

ˇjxj

1A
where �0 represents the base value of the scale parameter. As described in the section “Tweedie Distributions”
on page 270, for the parameter range p 2 .1; 2/, the mean of the Tweedie distribution is given by

� D ��
2 � p

p � 1

where � is the Poisson mean parameter of the scaled Tweedie distribution. This relationship enables you to
use the scale regression model to infer the influence of regression effects on the mean of the distribution.
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Let the data set Work.Test_Sevtw contain a sample generated from a Tweedie distribution with dispersion
parameter � D 0:5, index parameter p D 1:75, and the mean parameter that is affected by three regression
variables x1, x2, and x3 as follows:

� D 5 exp.0:25 x1 � x2C 3 x3/

Thus, the population values of regression parameters are �0 D 5, ˇ1 D 0:25, ˇ2 D �1, and ˇ3 D 3. You
can find the code used to generate the sample in the PROC HPSEVERITY sample program hsevex04.sas.

The following PROC HPSEVERITY step uses the sample in Work.Test_Sevtw data set to estimate the
parameters of the scale regression model for the predefined scaled Tweedie distribution (STWEEDIE) with
the dual quasi-Newton (QUANEW) optimization technique:

/*--- Fit the scale parameter version of the Tweedie distribution ---*/
proc hpseverity data=test_sevtw outest=estw covout print=all;

loss y;
scalemodel x1-x3;

dist stweedie;
nloptions tech=quanew;

run;

The dual quasi-Newton technique is used because it requires only the first-order derivatives of the objective
function, and it is harder to compute reasonably accurate estimates of the second-order derivatives of Tweedie
distribution’s PDF with respect to the parameters.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 9.4.1 and Output 9.4.2. The
distribution information and the convergence results are shown in Output 9.4.1.

Output 9.4.1 Convergence Results for the STWEEDIE Model with Regressors

The HPSEVERITY Procedure
stweedie Distribution

The HPSEVERITY Procedure
stweedie Distribution

Distribution Information

Name stweedie

Description Tweedie Distribution with Scale Parameter

Distribution Parameters 3

Regression Parameters 3

Convergence Status

Convergence criterion (FCONV=2.220446E-16) satisfied.

Optimization Summary

Optimization Technique Dual Quasi-Newton

Iterations 42

Function Calls 218

Log Likelihood -1044.3

The final parameter estimates of the STWEEDIE regression model are shown in Output 9.4.2. The estimate
that is reported for the parameter Theta is the estimate of the base value �0. The estimates of regression
coefficients ˇ1, ˇ2, and ˇ3 are indicated by the rows of x1, x2, and x3, respectively.
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Output 9.4.2 Parameter Estimates for the STWEEDIE Model with Regressors

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Theta 0.82888 0.26657 3.11 0.0021

Lambda 16.57174 13.12083 1.26 0.2076

P 1.75440 0.20187 8.69 <.0001

x1 0.27970 0.09876 2.83 0.0049

x2 -0.76715 0.10313 -7.44 <.0001

x3 3.03225 0.10142 29.90 <.0001

If your goal is to explain the influence of regression effects on the scale parameter, then the output displayed
in Output 9.4.2 is sufficient. But, if you want to compute the influence of regression effects on the mean of
the distribution, then you need to do some postprocessing. Using the relationship between � and � , � can be
written in terms of the parameters of the STWEEDIE model as

� D �0 exp

0@ kX
jD1

ˇjxj

1A�2 � p
p � 1

This shows that the parameters ˇj are identical for the mean and the scale model, and the base value �0 of
the mean model is

�0 D �0�
2 � p

p � 1

The estimate of �0 and the standard error associated with it can be computed by using the property of the
functions of maximum likelihood estimators (MLE). If g.�/ represents a totally differentiable function of
parameters �, then the MLE of g has an asymptotic normal distribution with mean g. O�/ and covariance
C D .@g/0†.@g/, where O� is the MLE of �, † is the estimate of covariance matrix of �, and @g is the
gradient vector of g with respect to � evaluated at O�. For �0, the function is g.�/ D �0�.2 � p/=.p � 1/.
The gradient vector is

@g D
�
@g

@�0

@g

@�

@g

@p

@g

@ˇ1
: : :

@g

@ˇk

�
D

�
�0

�0

�0

�

��0

.p � 1/.2 � p/
0 : : : 0

�

You can write a DATA step that implements these computations by using the parameter and covariance
estimates prepared by PROC HPSEVERITY step. The DATA step program is available in the sample program
hsevex04.sas. The estimates of �0 prepared by that program are shown in Output 9.4.3. These estimates and
the estimates of ˇj as shown in Output 9.4.2 are reasonably close (that is, within one or two standard errors)
to the parameters of the population from which the sample in Work.Test_Sevtw data set was drawn.

Output 9.4.3 Estimate of the Base Value Mu0 of the Mean Parameter

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu0 4.47179 0.42225 10.5904 0
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Another outcome of using the scaled Tweedie distribution to model the influence of regression effects is that
the regression effects also influence the variance V of the Tweedie distribution. The variance is related to
the mean as V D ��p , where � is the dispersion parameter. Using the relationship between the parameters
TWEEDIE and STWEEDIE distributions as described in the section “Tweedie Distributions” on page 270,
the regression model for the dispersion parameter is

log.�/ D .2 � p/ log.�/ � log.�.2 � p//

D ..2 � p/ log.�0/ � log.�.2 � p///C .2 � p/
kX
jD1

ˇjxj

Subsequently, the regression model for the variance is

log.V / D 2 log.�/ � log.�.2 � p//

D .2 log.�0/ � log.�.2 � p///C 2
kX
jD1

ˇjxj

In summary, PROC HPSEVERITY enables you to estimate regression effects on various parameters and
statistics of the Tweedie model.

Example 9.5: Fitting Distributions to Interval-Censored Data
In some applications, the data available for modeling might not be exact. A commonly encountered scenario
is the use of grouped data from an external agency, which for several reasons, including privacy, does not
provide information about individual loss events. The losses are grouped into disjoint bins, and you know
only the range and number of values in each bin. Each group is essentially interval-censored, because you
know that a loss magnitude is in certain interval, but you do not know the exact magnitude. This example
illustrates how you can use PROC HPSEVERITY to model such data.

The following DATA step generates sample grouped data for dental insurance claims, which is taken from
Klugman, Panjer, and Willmot (1998):

/* Grouped dental insurance claims data
(Klugman, Panjer, and Willmot, 1998) */

data gdental;
input lowerbd upperbd count @@;
datalines;

0 25 30 25 50 31 50 100 57 100 150 42 150 250 65 250 500 84
500 1000 45 1000 1500 10 1500 2500 11 2500 4000 3
;
run;
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The following PROC HPSEVERITY step fits all the predefined distributions to the data in Work.Gdental
data set:

/* Fit all predefined distributions */
proc hpseverity data=gdental edf=turnbull print=all criterion=aicc;

loss / rc=lowerbd lc=upperbd;
weight count;
dist _predef_;
performance nthreads=1;

run;

The EDF= option in the PROC HPSEVERITY statement specifies that the Turnbull’s method be used for EDF
estimation. The LOSS statement specifies the left and right boundaries of each group as the right-censoring
and left-censoring limits, respectively. The variable count records the number of losses in each group and is
specified in the WEIGHT statement. Note that no response variable is specified in the LOSS statement, which
is allowed as long as each observation in the input data set is censored. The PERFORMANCE statement
specifies that just one thread of execution be used, to minimize the overhead associated with multithreading,
because the input data set is very small.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 9.5.1. According to the
“Model Selection” table in Output 9.5.1, all distribution models have converged. The “All Fit Statistics”
table in Output 9.5.1 indicates that the exponential distribution (EXP) has the best fit for data according to a
majority of the likelihood-based statistics.

Output 9.5.1 Statistics of Fit for Interval-Censored Data

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.GDENTAL

Model Selection

Distribution Converged AICC Selected

Burr Yes 51.41112 No

Exp Yes 44.64768 Yes

Gamma Yes 47.63969 No

Igauss Yes 48.05874 No

Logn Yes 47.34027 No

Pareto Yes 47.16908 No

Gpd Yes 47.16908 No

Weibull Yes 47.47700 No
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Output 9.5.1 continued

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD

Burr 41.41112 * 47.41112 51.41112 48.31888 0.08974 * 0.00103 *

Exp 42.14768 44.14768 * 44.64768 * 44.45026 * 0.26412 0.09936

Gamma 41.92541 45.92541 47.63969 46.53058 0.19569 0.04608

Igauss 42.34445 46.34445 48.05874 46.94962 0.34514 0.12301

Logn 41.62598 45.62598 47.34027 46.23115 0.16853 0.01884

Pareto 41.45480 45.45480 47.16908 46.05997 0.11423 0.00739

Gpd 41.45480 45.45480 47.16908 46.05997 0.11423 0.00739

Weibull 41.76272 45.76272 47.47700 46.36789 0.17238 0.03293

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution CvM

Burr 0.0000816 *

Exp 0.01866

Gamma 0.00759

Igauss 0.02562

Logn 0.00333

Pareto 0.0009084

Gpd 0.0009084

Weibull 0.00472

Note: The asterisk (*) marks
the best model according to

each column's criterion.

Example 9.6: Benefits of Distributed and Multithreaded Computing
One of the key features of the HPSEVERITY procedure is that is takes advantage of the distributed and
multithreaded computing machinery in order to solve a given problem faster. This example illustrates the
benefits of using multithreading and distributed computing.

The example uses a simulated data set Work.Largedata, which contains 10,000,000 observations, some of
which are right-censored or left-truncated. The losses are affected by three external effects. The DATA step
program that generates this data set is available in the accompanying sample program hsevex06.sas.

The following PROC HPSEVERITY step fits all the predefined distributions to the data in Work.Largedata
data set on the client machine with just one thread of computation:

/* Fit all predefined distributions without any multithreading or
distributed computing */

proc hpseverity data=largedata criterion=aicc initsample(size=20000);
loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance nthreads=1 bufsize=1000000 details;

run;
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The NTHREADS=1 option in the PERFORMANCE statement specifies that just one thread of computation
be used. The absence of the NODES= option in the PERFORMANCE statement specifies that single-machine
mode of execution be used. That is, this step does not use any multithreading or distributed computing. The
BUFSIZE= option in the PERFORMANCE statement specifies the number of observations to read at one
time. Specifying a larger value tends to decrease the time it takes to load the data. The DETAILS option in
the performance statement enables reporting of the timing information. The INITSAMPLE option in the
PROC HPSEVERITY statement specifies that a uniform random sample of maximum 20,000 observations
be used for parameter initialization.

The “Performance Information” and “Procedure Task Timing” tables that PROC HPSEVERITY prepares are
shown in Output 9.6.1. The “Performance Information” table contains the information about the execution
environment. The “Procedure Task Timing” table indicates the total time and relative time taken by each of
the four main steps of PROC HPSEVERITY. As that table shows, it takes around 39 minutes for the task of
estimating parameters, which is usually the most time-consuming of all the tasks.

Output 9.6.1 Performance for Single-Machine Mode with No Multithreading

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Performance Information

Execution Mode Single-Machine

Number of Threads 1

Procedure Task Timing

Task Seconds Percent

Load and Prepare Models 1.39 0.06%

Load and Prepare Data 9.52 0.40%

Initialize Parameters 1.72 0.07%

Estimate Parameters 2369.32 99.35%

Compute Fit Statistics 2.84 0.12%

If the grid appliance is not available, you can improve the performance by using multiple threads of
computation; this is in fact the default. The following PROC HPSEVERITY step fits all the predefined
distributions by using all the logical CPU cores of the machine:

/* Specify that all the logical CPU cores on the machine be used */
options cpucount=actual;

/* Fit all predefined distributions with multithreading, but no
distributed computing */

proc hpseverity data=largedata criterion=aicc initsample(size=20000);
loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance bufsize=1000000 details;

run;

When you do not specify the NTHREADS= option in the PERFORMANCE statement, the HPSEVERITY
procedure uses the value of the CPUCOUNT= system option to decide the number of threads to use in
single-machine mode. Setting the CPUCOUNT= option to ACTUAL before the PROC HPSEVERITY step
enables the procedure to use all the logical cores of the machine. The machine that is used to obtain these
results (and the earlier results in Output 9.6.1) has four physical CPU cores, each with a clock speed of 3.4
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GHz. Hyperthreading is enabled on the CPUs to yield eight logical CPU cores; this number is confirmed by
the “Performance Information” table in Output 9.6.2. The results in the “Procedure Task Timing” table in
Output 9.6.2 indicate that the use of multithreading has improved the performance by reducing the time to
estimate parameters to around 10 minutes.

Output 9.6.2 Performance for Single-Machine Mode with Eight Threads

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Performance Information

Execution Mode Single-Machine

Number of Threads 8

Procedure Task Timing

Task Seconds Percent

Load and Prepare Models 1.26 0.19%

Load and Prepare Data 8.99 1.38%

Initialize Parameters 1.22 0.19%

Estimate Parameters 620.71 95.43%

Compute Fit Statistics 18.27 2.81%

When a grid appliance is available, performance can be further improved by using more than one node in the
distributed mode of execution. Large data sets are usually predistributed on the grid appliance that hosts a
distributed database. In other words, large problems are best suited for the alongside-the-database model of
execution. However, for the purpose of illustration, this example assumes that the data set is available on the
client machine and is then distributed to the grid nodes by the HPSEVERITY procedure according to the
options that are specified in the PERFORMANCE statement.

The next few PROC HPSEVERITY steps are run on a grid appliance by varying the number of nodes and the
number of threads that are used within each node.

You can specify your distributed computing environment by using SAS environment variables or by specifying
options in the PERFORMANCE statement, or by a combination of these methods. For example, you can
submit the following statements to specify the appliance host (GRIDHOST= SAS environment variable)
and the installation location of shared libraries on the appliance (GRIDINSTALLLOC= SAS environment
variable):

/* Set the appliance host and installation location that are
appropriate for your distributed mode setup */

option set=GRIDHOST ="&GRIDHOST";
option set=GRIDINSTALLLOC="&GRIDINSTALLLOC";

To run the preceding statements successfully, you need to set the macro variables GRIDHOST and GRIDIN-
STALLLOC to resolve to appropriate values, or you can replace the references to macro variables with the
appropriate values. Alternatively, you can specify the HOST= and INSTALL= options in the PERFOR-
MANCE statement; this method is used in the PROC HPSEVERITY steps of this example. You can use other
SAS environment variables and PERFORMANCE statement options to describe your distributed computing
environment. For more information, see the section “PERFORMANCE Statement” on page 36.
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To establish a reference point for the performance of one CPU of a grid node, the results of using only one
node of the grid appliance without any multithreading are presented first. The particular grid appliance that is
used to obtain these results has more than sixteen nodes. Each node has 8 dual-core CPUs with a clock speed
of 2.7 GHz. The following PROC HPSEVERITY step fits all the predefined distributions to the data in the
Work.Largedata data set:

/* Fit all predefined distributions on 1 grid node without
any multithreading */

proc hpseverity data=largedata criterion=aicc initsample(size=20000);
loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance nodes=1 nthreads=1 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;

The PERFORMANCE statement specifies that only one node be used to fit the models, with only one thread
of computation on that node. The “Performance Information” and “Procedure Task Timing” tables that
PROC HPSEVERITY prepares are shown in Output 9.6.3. It takes around 39 minutes to complete the task of
estimating parameters.

Output 9.6.3 Performance on One Grid Appliance Node with No Multithreading

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 1

Number of Threads per Node 1

Procedure Task Timing

Task Seconds Percent

Load and Prepare Models 1.36 0.06%

Load and Prepare Data 0.97 0.04%

Initialize Parameters 1.06 0.04%

Estimate Parameters 2364.80 99.78%

Compute Fit Statistics 1.80 0.08%

The computations and time taken to fit each model are shown in the “Estimation Details” table of Output 9.6.4,
which is generated whenever you specify the DETAILS option in the PERFORMANCE statement. This
table can be useful for comparing the relative effort required to fit each model and drawing some broader
conclusions. For example, even if the Pareto distribution takes a larger number of iterations, function calls,
and gradient and Hessian updates than the gamma distribution, it takes less time to complete; this indicates
that the individual PDF and CDF computations of the gamma distribution are more expensive than those of
the Pareto distribution.
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Output 9.6.4 Estimation Details

Estimation Details

Distribution Converged Iterations
Function

Calls
Gradient
Updates

Hessian
Updates

Time
(Seconds)

Burr Yes 11 28 104 90 322.81

Exp Yes 4 12 27 20 29.39

Gamma Yes 6 17 44 35 968.34

Igauss Yes 4 12 27 20 274.04

Logn Yes 4 12 27 20 113.21

Pareto Maybe 50 137 1430 1377 465.01

Gpd Yes 6 17 44 35 120.83

Weibull Yes 4 12 27 20 71.16

To obtain the next reference point for performance, the following PROC HPSEVERITY step specifies that 16
computation threads be used on one node of the grid appliance:

/* Fit all predefined distributions on 1 grid node with multithreading */
proc hpseverity data=largedata criterion=aicc initsample(size=20000);

loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance nodes=1 nthreads=16 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;

The performance tables that are prepared by the preceding statements are shown in Output 9.6.5. As the
“Procedure Task Timing” table shows, use of multithreading has improved the performance significantly
over that of the single-threaded case. Now, it takes around 3.3 minutes to complete the task of estimating
parameters.

Output 9.6.5 Performance Information with Multithreading but No Distributed Computing

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 1

Number of Threads per Node 16

Procedure Task Timing

Task Seconds Percent

Load and Prepare Models 0.47 0.23%

Load and Prepare Data 0.45 0.23%

Initialize Parameters 1.00 0.50%

Estimate Parameters 197.47 98.55%

Compute Fit Statistics 0.99 0.49%
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You can combine the power of multithreading and distributed computing by specifying that multiple nodes of
the grid be used to accomplish the task. The following PROC HPSEVERITY step specifies that 16 nodes of
the grid appliance be used:

/* Fit all predefined distributions with distributed computing and
multithreading within each node */

proc hpseverity data=largedata criterion=aicc initsample(size=20000);
loss y / lt=threshold rc=limit;
scalemodel x1-x3;
dist _predef_;
performance nodes=16 nthreads=16 details

host="&GRIDHOST" install="&GRIDINSTALLLOC";
run;

When the DATA= data set is local to the client machine, as it is in this example, you must specify a nonzero
value for the NODES= option in the PERFORMANCE statement in order to enable the distributed mode of
execution. In other words, for the distributed mode that is not executing alongside the database, omitting the
NODES= option is equivalent to specifying NODES=0, which is single-machine mode.

The performance tables that are prepared by the preceding statements are shown in Output 9.6.6. If you
compare these tables to the tables in Output 9.6.3 and Output 9.6.5, you see that the task that would have
taken a long time with a single thread of execution on a single machine (over half an hour) can be performed
in a much shorter time (around 17 seconds) by using the computational resources of the grid appliance to
combine the power of multithreaded and distributed computing.

Output 9.6.6 Performance Information with Distributed Computing and Multithreading

Performance Information

Host Node << your grid host >>

Install Location << your grid install location >>

Execution Mode Distributed

Number of Compute Nodes 16

Number of Threads per Node 16

Procedure Task Timing

Task Seconds Percent

Load and Prepare Models 0.56 2.97%

Load and Prepare Data 0.03 0.16%

Initialize Parameters 0.78 4.12%

Estimate Parameters 16.77 88.60%

Compute Fit Statistics 0.78 4.14%

The machines that were used to obtain these performance results are relatively modest machines, and PROC
HPSEVERITY was run in a multiuser environment; that is, background processes were running in single-
machine mode or other users were using the grid in distributed mode. For time-critical applications, you can
use a larger, dedicated grid that consists of more powerful machines to achieve more dramatic performance
improvement.



376 F Chapter 9: The HPSEVERITY Procedure

Example 9.7: Estimating Parameters Using Cramér-von Mises Estimator
PROC HPSEVERITY enables you to estimate model parameters by minimizing your own objective function.
This example illustrates how you can use PROC HPSEVERITY to implement the Cramér-von Mises estimator.
Let F.yi I‚/ denote the estimate of CDF at yi for a distribution with parameters ‚, and let Fn.yi / denote
the empirical estimate of CDF (EDF) at yi that is computed from a sample yi , 1 � i � N . Then, the
Cramér-von Mises estimator of the parameters is defined as

O‚ D arg min
‚

NX
iD1

.F.yi I‚/ � Fn.yi //
2

This estimator belongs to the class of minimum distance estimators. It attempts to estimate the parameters
such that the squared distance between the CDF and EDF estimates is minimized.

The following PROC HPSEVERITY step uses the Cramér-von Mises estimator to fit four candidate distribu-
tion models, including the LOGNGPD mixed-tail distribution model that was defined in “Example 9.3: Defin-
ing a Model for Mixed-Tail Distributions” on page 358. The input sample is the same as is used in that
example.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

/*-------- Fit LOGNGPD model with PROC HPSEVERITY by using -------
-------- the Cramer-von Mises minimum distance estimator -------*/

proc hpseverity data=testmixdist obj=cvmobj print=all;
loss y;
dist logngpd burr logn gpd;

* Cramer-von Mises estimator (minimizes the distance *
* between parametric and nonparametric estimates) *;
cvmobj = _cdf_(y);
cvmobj = (cvmobj -_edf_(y))**2;

run;

The OBJ= option in the PROC HPSEVERITY statement specifies that the objective function cvmobj should
be minimized. The programming statements compute the contribution of each observation in the input data
set to the objective function cvmobj. The use of keyword functions _CDF_ and _EDF_ makes the program
applicable to all the distributions.

Some of the key results prepared by PROC HPSEVERITY are shown in Output 9.7.1. The “Model Selection”
table indicates that all models converged. When you specify a custom objective function, the default selection
criterion is the value of the custom objective function. The “All Fit Statistics” table indicates that LOGNGPD
is the best distribution according to all the statistics of fit. Comparing the fit statistics of Output 9.7.1 with
those of Output 9.3.1 indicates that the use of the Cramér-von Mises estimator has resulted in smaller values
for all the EDF-based statistics of fit for all the models, which is expected from a minimum distance estimator.
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Output 9.7.1 Summary of Cramér-von Mises Estimation

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Input Data Set

Name WORK.TESTMIXDIST

Label Lognormal Body-GPD Tail Sample

Model Selection

Distribution Converged cvmobj Selected

logngpd Yes 0.02694 Yes

Burr Yes 0.03325 No

Logn Yes 0.03633 No

Gpd Yes 2.96090 No

All Fit Statistics

Distribution cvmobj
-2 Log

Likelihood AIC AICC BIC KS

logngpd 0.02694 * 419.49635 * 429.49635 * 430.13464 * 442.52220 * 0.51332 *

Burr 0.03325 436.58823 442.58823 442.83823 450.40374 0.53084

Logn 0.03633 491.88659 495.88659 496.01030 501.09693 0.52469

Gpd 2.96090 560.35409 564.35409 564.47780 569.56443 2.99095

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution AD CvM

logngpd 0.21563 * 0.03030 *

Burr 0.82875 0.03807

Logn 2.08312 0.04173

Gpd 15.51378 2.97806

Note: The asterisk (*) marks the best
model according to each column's

criterion.

Example 9.8: Defining a Finite Mixture Model That Has a Scale Parameter
A finite mixture model is a stochastic model that postulates that the probability distribution of the data
generation process is a mixture of a finite number of probability distributions. For example, when an
insurance company analyzes loss data from multiple policies that are underwritten in different geographic
regions, some regions might behave similarly, but the distribution that governs some regions might be
different from the distribution that governs other regions. Further, it might not be known which regions
behave similarly. Also, the larger amounts of losses might follow a different stochastic process from the
stochastic process that governs the smaller amounts of losses. It helps to model all policies together in order
to pool the data together and exploit any commonalities among the regions, and the use of a finite mixture
model can help capture the differences in distributions across regions and ranges of loss amounts.
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Formally, if fi and Fi denote the PDF and CDF, respectively, of component distribution i and pi represents
the mixing probability that is associated with component i, then the PDF and CDF of the finite mixture of K
distribution components are

f .xI‚; p/ D
KX
iD1

pifi .xI‚i /

F.xI‚; p/ D
KX
iD1

piFi .xI‚i /

where ‚i denotes the parameters of component distribution i and ‚ denotes the parameters of the mixture
distribution, which is a union of all the ‚i parameters. p denotes the set of mixing probabilities. All mixing
probabilities must add up to 1 (

PK
iD1 pi D 1).

You can define the finite mixture of a specific number of components and specific distributions for each of
the components by defining the FCMP functions for the PDF and CDF. However, in general, it is not possible
to fit a scale regression model by using any finite mixture distribution unless you take special care to ensure
that the mixture distribution has a scale parameter. This example provides a formulation of a two-component
finite mixture model that has a scale parameter.

To start with, each component distribution must have either a scale parameter or a log-transformed scale
parameter. Let �1 and �2 denote the scale parameters of the first and second components, respectively. Let
p1 D p be the mixing probability, which makes p2 D 1 � p by using the constraint on p. The PDF of the
mixture of these two distributions can be written as

f .xI �1; �2; ˆ; p/ D
p

�1
f1.

x

�1
Iˆ1/C

1 � p

�2
f2.

x

�2
Iˆ2/

where ˆ1 and ˆ2 denote the sets of nonscale parameters of the first and second components, respectively,
and ˆ denotes a union of ˆ1 and ˆ2. For the mixture to have the scale parameter � , the PDF must be of the
form

f .xI �;ˆ0; p/ D
1

�

�
pf1.

x

�
Iˆ01/C .1 � p/f2.

x

�
Iˆ02/

�
where ˆ0, ˆ01, and ˆ02 denote the modified sets of nonscale parameters. One simple way to achieve this is
to make �1 D �2 D � and ˆ0 D ˆ; that is, you simply equate the scale parameters of both components
and keep the set of nonscale parameters unchanged. However, forcing the scale parameters to be equal in
both components is restrictive, because the mixture cannot model potential differences in the scales of the
two components. A better approach is to tie the scale parameters of the two components by a ratio such
that �1 D � and �2 D �� . If the ratio parameter � is estimated along with the other parameters, then the
mixture distribution becomes flexible enough to model the variations across the scale parameters of individual
components.

To summarize, the PDF and CDF are of the following form for the two-component mixture that has a scale
parameter:

f .xI �; �;ˆ; p/ D
1

�

�
pf1.

x

�
Iˆ1/C .1 � p/f2.

x

�
I �;ˆ2/

�
F.xI �; �;ˆ; p/ D pF1.

x

�
Iˆ1/C .1 � p/F2.

x

�
I �;ˆ2/
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This can be generalized to a mixture of K components by introducing the K � 1 ratio parameters �i that
relate the scale parameters of each of the K components to the scale parameter � of the mixture distribution
as follows:

�1 D �

�i D �i� I i 2 Œ2;K�

In order to illustrate this approach, define a mixture of two lognormal distributions by using the following
PDF function:

f .xI�; �1; p2; �2; �2/ D
.1 � p2/

�1x
p
2�

exp

 
�.log.x/ � �/2

2�21

!
C

p2

�2x
p
2�

exp

 
�.log.x/ � � � log.�2//2

2�22

!
You can verify that � serves as the log of the scale parameter � (� D log.�/).

The following PROC FCMP steps encode this formulation in a distribution named SLOGNMIX2 for use
with PROC HPSEVERITY:

/*- Define Mixture of 2 Lognormal Distributions with a Log-Scale Parameter -*/
proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;

function slognmix2_description() $128;
return ("Mixture of two lognormals with a log-scale parameter Mu");

endsub;

function slognmix2_scaletransform() $8;
return ("LOG");

endsub;

function slognmix2_pdf(x, Mu, Sigma1, p2, Rho2, Sigma2);
Mu1 = Mu;
Mu2 = Mu + log(Rho2);
pdf1 = logn_pdf(x, Mu1, Sigma1);
pdf2 = logn_pdf(x, Mu2, Sigma2);
return ((1-p2)*pdf1 + p2*pdf2);

endsub;

function slognmix2_cdf(x, Mu, Sigma1, p2, Rho2, Sigma2);
Mu1 = Mu;
Mu2 = Mu + log(Rho2);
cdf1 = logn_cdf(x, Mu1, Sigma1);
cdf2 = logn_cdf(x, Mu2, Sigma2);
return ((1-p2)*cdf1 + p2*cdf2);

endsub;

subroutine slognmix2_parminit(dim, x[*], nx[*], F[*], Ftype,
Mu, Sigma1, p2, Rho2, Sigma2);

outargs Mu, Sigma1, p2, Rho2, Sigma2;
array m[1] / nosymbols;
p2 = 0.5;
Rho2 = 0.5;
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median = svrtutil_percentile(0.5, dim, x, F, Ftype);
Mu = log(2*median/1.5);
call svrtutil_rawmoments(dim, x, nx, 1, m);
lm1 = log(m[1]);

/* Search Rho2 that makes log(sample mean) > Mu */
do while (lm1 <= Mu and Rho2 < 1);

Rho2 = Rho2 + 0.01;
Mu = log(2*median/(1+Rho2));

end;
if (Rho2 >= 1) then

/* If Mu cannot be decreased enough to make it less
than log(sample mean), then revert to Rho2=0.5.
That will set Sigma1 and possibly Sigma2 to missing.
PROC HPSEVERITY replaces missing initial values with 0.001. */

Mu = log(2*median/1.5);

Sigma1 = sqrt(2.0*(log(m[1])-Mu));
Sigma2 = sqrt(2.0*(log(m[1])-Mu-log(Rho2)));

endsub;

subroutine slognmix2_lowerbounds(Mu, Sigma1, p2, Rho2, Sigma2);
outargs Mu, Sigma1, p2, Rho2, Sigma2;
Mu = .; /* Mu has no lower bound */
Sigma1 = 0; /* Sigma1 > 0 */
p2 = 0; /* p2 > 0 */
Rho2 = 0; /* Rho2 > 0 */
Sigma2 = 0; /* Sigma2 > 0 */

endsub;

subroutine slognmix2_upperbounds(Mu, Sigma1, p2, Rho2, Sigma2);
outargs Mu, Sigma1, p2, Rho2, Sigma2;
Mu = .; /* Mu has no upper bound */
Sigma1 = .; /* Sigma1 has no upper bound */
p2 = 1; /* p2 < 1 */
Rho2 = 1; /* Rho2 < 1 */
Sigma2 = .; /* Sigma2 has no upper bound */

endsub;
quit;

As shown in previous examples, an important aspect of defining a distribution for use with PROC HPSEVER-
ITY is the definition of the PARMINIT subroutine that initializes the parameters. For mixture distributions,
in general, the parameter initialization is a nontrivial task. For a two-component mixture, some simplifying
assumptions make the problem easier to handle. For the initialization of SLOGNMIX2, the initial values of
p2 and �2 are fixed at 0.5, and the following two simplifying assumptions are made:

• The median of the mixture is the average of the medians of the two components:

F�1.0:5/ D .exp.�1/C exp.�2//=2 D exp.�/.1C �2/=2

Solution of this equation yields the value of � in terms of �2 and the sample median.

• Each component has the same mean, which implies the following:

exp.�C �21=2/ D exp.�C log.�2/C �22=2/
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If Xi represents the random variable of component distribution i and X represents the random variable
of the mixture distribution, then the following equation holds for the raw moment of any order k:

EŒXk� D

KX
iD1

piEŒX
k
i �

This, in conjunction with the assumption on component means, leads to the equations

log.m1/ D �C
�21
2

log.m1/ D �C log.�2/C
�22
2

where m1 denotes the first raw moment of the sample. Solving these equations leads to the following
values of �1 and �2:

�21 D 2.log.m1/ � �/ �22 D 2.log.m1/ � � � log.�2//

Note that �1 has a valid value only if log.m1/ > �. Among the many possible methods of ensuring
this condition, the SLOGNMIX2_PARMINIT subroutine uses the method of doing a linear search over
�2.

Even when the preceding assumptions are not true for a given problem, they produce reasonable initial values
to help guide the nonlinear optimizer to an acceptable optimum if the mixture of two lognormal distributions
is indeed a good fit for your input data. This is illustrated by the results of the following steps that fit the
SLOGNMIX2 distribution to simulated data, which have different means for the two components (12.18 and
22.76, respectively), and the median of the sample (15.94) is not equal to the average of the medians of the
two components (7.39 and 20.09, respectively):

/*-------- Simulate a lognormal mixture sample ----------*/
data testlognmix(keep=y);

call streaminit(12345);
Mu1 = 2;
Sigma1 = 1;
i = 0;
do j=1 to 2000;

y = exp(Mu1) * rand('LOGNORMAL')**Sigma1;
output;

end;
Mu2 = 3;
Sigma2 = 0.5;
do j=1 to 3000;

y = exp(Mu2) * rand('LOGNORMAL')**Sigma2;
output;

end;
run;

/*-- Fit and compare scale regression models with 2-component --*/
/*-- lognormal mixture and the standard lognormal distribution --*/
options cmplib=(work.sevexmpl);

proc hpseverity data=testlognmix print=all;
loss y;
dist slognmix2 logn;

run;
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The comparison of the fit statistics of SLOGNMIX2 and LOGN, as shown in Output 9.8.1, confirms that the
two-component mixture is certainly a better fit to these data than the single lognormal distribution.

Output 9.8.1 Comparison of Fitting One versus Two Lognormal Components to Mixture Data

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD CvM

slognmix2 38343 * 38353 * 38353 * 38386 * 0.52221 * 0.19843 * 0.02728 *

Logn 39073 39077 39077 39090 5.86522 66.93414 11.72703

Note: The asterisk (*) marks the best model according to each column's criterion.

The detailed results for the SLOGNMIX2 distribution are shown in Output 9.8.2. According to the “Initial
Parameter Values and Bounds” table, the initial value of �2 is not 0.5, indicating that a linear search was
conducted to ensure log.m1/ > �.

Output 9.8.2 Detailed Estimation Results for the SLOGNMIX2 Distribution

The HPSEVERITY Procedure
slognmix2 Distribution

The HPSEVERITY Procedure
slognmix2 Distribution

Distribution Information

Name slognmix2

Description Mixture of two lognormals with a log-scale parameter Mu

Distribution Parameters 5

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 2.92006 -Infty Infty

Sigma1 0.10455 1.05367E-8 Infty

P2 0.50000 1.05367E-8 1.00000

Rho2 0.72000 1.05367E-8 1.00000

Sigma2 0.81728 1.05367E-8 Infty

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 7

Function Calls 18

Log Likelihood -19171.5

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 3.00922 0.01554 193.68 <.0001

Sigma1 0.49516 0.01451 34.13 <.0001

P2 0.40619 0.02600 15.62 <.0001

Rho2 0.37212 0.02038 18.26 <.0001

Sigma2 1.00019 0.02124 47.09 <.0001
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By using the relationship that �2 D �C log.�2/, you can see that the final parameter estimates are indeed
close to the true parameter values that were used to simulate the input sample.

Example 9.9: Predicting Mean and Value-at-Risk by Using Scoring Functions
If you work in the risk management department of an insurance company or a bank, then one of your primary
applications of severity loss distribution models is to predict the value-at-risk (VaR), such that the probability
of experiencing a loss value greater than the VaR is very low. The probability level at which VaR is measured
is prescribed by industry regulations such as Basel III and Solvency II. The VaR level is usually specified in
terms of .1� ˛/, where ˛ 2 .0; 1/ is the probability that a loss value exceeds the VaR. Typical VaR levels are
0.95, 0.975, and 0.995.

In addition to predicting VaR, which is regarded as an estimate of the worst-case loss, businesses are often
interested in predicting the average loss by estimating either the mean or median of the distribution.

The estimation of the mean and VaR combined with the scale regression model is very potent tool for
analyzing worst-case and average losses for various scenarios. For example, if the regressors that are used in
a scale regression model represent some key macroeconomic and operational indicators, which are widely
referred to as key risk indicators (KRIs), then you can analyze the VaR and mean loss estimates over various
values for the KRIs to get a more comprehensive picture of the risk profile of your organization across various
market and internal conditions.

This example illustrates the use of scoring functions to simplify the process of predicting the mean and VaR
of scale regression models.

First, the following PROC FCMP steps define the functions to compute the mean for each of the 10 predefined
distributions that are available in the Sashelp.Svrtdist library:

/*--------- Define distribution functions that compute the mean ----------*/
proc fcmp library=sashelp.svrtdist outlib=work.means.scalemod;

function BURR_MEAN(x, Theta, Alpha, Gamma);
if not(Alpha * Gamma > 1) then

return (.); /* first moment does not exist */
return (Theta*gamma(1 + 1/Gamma)*gamma(Alpha - 1/Gamma)/gamma(Alpha));

endsub;
function EXP_MEAN(x, Theta);

return (Theta);
endsub;
function GAMMA_MEAN(x, Theta, Alpha);

return (Theta*Alpha);
endsub;
function GPD_MEAN(x, Theta, Xi);

if not(Xi < 1) then
return (.); /* first moment does not exist */

return (Theta/(1 - Xi));
endsub;
function IGAUSS_MEAN(x, Theta, Alpha);

return (Theta);
endsub;
function LOGN_MEAN(x, Mu, Sigma);

return (exp(Mu + Sigma*Sigma/2.0));
endsub;
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function PARETO_MEAN(x, Theta, Alpha);
if not(Alpha > 1) then

return (.); /* first moment does not exist */
return (Theta/(Alpha - 1));

endsub;
function STWEEDIE_MEAN(x, Theta, Lambda, P);

return (Theta* Lambda * (2 - P) / (P - 1));
endsub;
function TWEEDIE_MEAN(x, P, Mu, Phi);

return (Mu);
endsub;
function WEIBULL_MEAN(x, Theta, Tau);

return (Theta*gamma(1 + 1/Tau));
endsub;

quit;

The following statements include the Work.Means library in the CMPLIB= system option and submit a PROC
HPSEVERITY step to estimate the scale regression models for various distributions by using a lognormal
sample in the Work.Test_sev8 data set:

/*----- Fit all distributions and generate scoring functions ------*/
options cmplib=work.means;
proc hpseverity data=test_sev9 outest=est print=all;

loss y;
scalemodel x1-x5;
dist _predefined_ stweedie;
outscorelib outlib=scorefuncs commonpackage;

run;

The SAS statements that simulate the sample in the Work.Test_sev8 data set are available in the PROC
HPSEVERITY sample program hsevex09.sas. The OUTLIB= option in the OUTSCORELIB statement
requests that the scoring functions be written to the Work.Scorefuncs library, and the COMMONPACKAGE
option in the OUTSCORELIB statement requests that all the functions be written to the same package. Upon
completion, PROC HPSEVERITY sets the CMPLIB system option to the following value:

(work.means sashelp.svrtdist work.scorefuncs)

The “All Fit Statistics” table in Output 9.9.1 shows that the lognormal distribution’s scale model is the best
and the inverse Gaussian’s scale model is a close second according to the likelihood-based statistics.

You can examine the scoring functions that are written to the Work.Scorefuncs library by using the FCMP
Function Editor that is available in the Display Manager session of Base SAS when you select Solu-
tions!Analysis from the main menu. For example, PROC HPSEVERITY automatically generates and
submits the following PROC FCMP statements to define the scoring functions ‘SEV_MEAN_LOGN’ and
‘SEV_QUANTILE_IGAUSS’:

proc fcmp library=(work.means sashelp.svrtdist) outlib=work.scorefuncs.sevfit;
function SEV_MEAN_LOGN(y, x{*});

_logscale_=0;
_logscale_ = _logscale_ + ( 7.64722278930350E-01 * x{1});
_logscale_ = _logscale_ + ( 2.99209540369860E+00 * x{2});
_logscale_ = _logscale_ + (-1.00788916253430E+00 * x{3});
_logscale_ = _logscale_ + ( 2.58883602184890E-01 * x{4});
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_logscale_ = _logscale_ + ( 5.00927479793970E+00 * x{5});
_logscale_ = _logscale_ + ( 9.95078833050690E-01);
return (LOGN_MEAN(y, _logscale_, 2.31592981635590E-01));

endsub;

function SEV_QUANTILE_IGAUSS(y, x{*});
_logscale_=0;
_logscale_ = _logscale_ + ( 7.64581738373520E-01 * x{1});
_logscale_ = _logscale_ + ( 2.99159055015310E+00 * x{2});
_logscale_ = _logscale_ + (-1.00793496641510E+00 * x{3});
_logscale_ = _logscale_ + ( 2.58870460543840E-01 * x{4});
_logscale_ = _logscale_ + ( 5.00996884646730E+00 * x{5});
_scale_ = 2.77854870591020E+00 * exp(_logscale_);
return (IGAUSS_QUANTILE(y, _scale_, 1.81511227238720E+01));

endsub;
quit;

Output 9.9.1 Comparison of Fitted Scale Models for Mean and VaR Illustration

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

All Fit Statistics

Distribution
-2 Log

Likelihood AIC AICC BIC KS AD

stweedie 460.65756 476.65756 476.95083 510.37442 10.44549 64571

Burr 451.42238 467.42238 467.71565 501.13924 10.32782 42254

Exp 1515 1527 1527 1552 8.85827 29917

Gamma 448.28222 462.28222 462.50986 491.78448 10.42272 63712

Igauss 444.44512 458.44512 458.67276 487.94738 10.33028 83195

Logn 444.43670 * 458.43670 * 458.66434 * 487.93895 * 10.37035 68631

Pareto 1515 1529 1529 1559 8.85775 * 29916 *

Gpd 1515 1529 1529 1559 8.85827 29917

Weibull 527.28676 541.28676 541.51440 570.78902 10.48084 72814

Note: The asterisk (*) marks the best model according to each column's criterion.

All Fit Statistics

Distribution CvM

stweedie 37.07708

Burr 37.19808

Exp 23.98267

Gamma 37.19450

Igauss 37.30880

Logn 37.18553

Pareto 23.98149 *

Gpd 23.98267

Weibull 36.36039

Note: The asterisk (*)
marks the best model

according to each column's
criterion.
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An important point to note is that the dist_MEAN distribution functions are not available in the original
definition of any of the distributions in the Sashelp.Svrtdist library. PROC HPSEVERITY detects the
availability of those functions in the Work.Means library that is included in the value of the CMPLIB=
system option just before submitting the PROC HPSEVERITY step. Each dist_MEAN distribution function
has a signature that matches the signature of a distribution function of the respective distribution, so PROC
HPSEVERITY creates the corresponding scoring functions. Specifying the COMMONPACKAGE option in
the OUTSCORELIB statement causes the name of the scoring function to take the form SEV_MEAN_dist .
You can define any distribution function that has the desired signature to compute an estimate of your choice,
include its library in the CMPLIB= system option, and then specify the OUTSCORELIB statement to
generate the corresponding scoring functions.

To illustrate the use of scoring functions, let Work.Reginput contain the scoring data, where the values of
regressors in each observation define one scenario. Scoring functions make it very easy to compute the mean
and VaR of each distribution’s scale model for each of the scenarios, as the following steps illustrate for the
lognormal and inverse Gaussian distributions:

/*--- Set VaR level ---*/
%let varLevel=0.975;

/*--- Compute scores (mean and var) for the ---
--- scoring data by using the scoring functions ---*/

data scores;
array x{*} x1-x5;
set reginput;

igauss_mean = sev_mean_igauss(., x);
igauss_var = sev_quantile_igauss(&varLevel, x);
logn_mean = sev_mean_logn(., x);
logn_var = sev_quantile_logn(&varLevel, x);

run;

The preceding steps use a VaR level of 97.5%.

The following DATA step accomplishes the same task by reading the parameter estimates that were written
to the Work.Est data set by the previous PROC HPSEVERITY step:

/*--- Compute scores (mean and var) for the ---
--- scoring data by using the OUTEST= data set ---*/

data scoresWithOutest(keep=x1-x5 igauss_mean igauss_var logn_mean logn_var);
array _x_{*} x1-x5;
array _xparmIgauss_{5} _temporary_;
array _xparmLogn_{5} _temporary_;

retain _Theta0_ Alpha0;
retain _Mu0_ Sigma0;

*--- read parameter estimates for igauss and logn models ---*;
if (_n_ = 1) then do;

set est(where=(upcase(_MODEL_)='IGAUSS' and _TYPE_='EST'));
_Theta0_ = Theta; Alpha0 = Alpha;
do _i_=1 to dim(_x_);

if (_x_(_i_) = .R) then _xparmIgauss_(_i_) = 0;
else _xparmIgauss_(_i_) = _x_(_i_);

end;
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set est(where=(upcase(_MODEL_)='LOGN' and _TYPE_='EST'));
_Mu0_ = Mu; Sigma0 = Sigma;
do _i_=1 to dim(_x_);

if (_x_(_i_) = .R) then _xparmLogn_(_i_) = 0;
else _xparmLogn_(_i_) = _x_(_i_);

end;
end;

set reginput;

*--- predict mean and VaR for inverse Gaussian ---*;

* first compute X'*beta for inverse Gaussian *;
_xbeta_ = 0.0;
do _i_ = 1 to dim(_x_);

_xbeta_ = _xbeta_ + _xparmIgauss_(_i_) * _x_(_i_);
end;

* now compute scale for inverse Gaussian *;
_SCALE_ = _Theta0_ * exp(_xbeta_);
igauss_mean = igauss_mean(., _SCALE_, Alpha0);
igauss_var = igauss_quantile(&varLevel, _SCALE_, Alpha0);

*--- predict mean and VaR for lognormal ---*;

* first compute X'*beta for lognormal*;
_xbeta_ = 0.0;
do _i_ = 1 to dim(_x_);

_xbeta_ = _xbeta_ + _xparmLogn_(_i_) * _x_(_i_);
end;

* now compute Mu=log(scale) for lognormal *;
_MU_ = _Mu0_ + _xbeta_;
logn_mean = logn_mean(., _MU_, Sigma0);
logn_var = logn_quantile(&varLevel, _MU_, Sigma0);

run;

The “Values Comparison Summary” table in Output 9.9.2 shows that the difference between the estimates
that are produced by both methods is within the acceptable machine precision. However, the comparison
of the DATA step complexity of each method clearly shows that the method that uses the scoring functions
is much easier because it saves a lot of programming effort. Further, new distribution functions, such as
the dist_MEAN functions that are illustrated here, are automatically discovered and converted to scoring
functions by PROC HPSEVERITY. That enables you to focus your efforts on writing the distribution function
that computes your desired score, which needs to be done only once. Then, you can create and use the
corresponding scoring functions multiple times with much less effort.

Output 9.9.2 Comparison of Mean and VaR Estimates of Two Scoring Methods

                             The COMPARE Procedure                              
              Comparison of WORK.SCORESWITHOUTEST with WORK.SCORES              
                  (Method=RELATIVE(0.0222), Criterion=1.0E-12)                  
                                                                                
NOTE: All values compared are within the equality criterion used. However, 40   
      of the values compared are not exactly equal.                             
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Example 9.10: Scale Regression with Rich Regression Effects
This example illustrates the use of regression effects that include CLASS variables and interaction effects.

Consider that you, as an actuary at an automobile insurance company, want to evaluate the effect of certain
external factors on the distribution of the severity of the losses that your policyholders incur. Such analysis
can help you determine the relative differences in premiums that you should charge to policyholders who
have different characteristics. Assume that when you collect and record the information about each claim,
you also collect and record some key characteristics of the policyholder and the vehicle that is involved in
the claim. This example focuses on the following five factors: type of car, safety rating of the car, gender
of the policyholder, education level of the policyholder, and annual household income of the policyholder
(which can be thought of as a proxy for the luxury level of the car). Let these regressors be recorded in the
variables CarType (1: sedan, 2: sport utility vehicle), CarSafety (scaled to be between 0 and 1, the safest
being 1), Gender (1: female, 2: male), Education (1: high school graduate, 2: college graduate, 3: advanced
degree holder), and Income (scaled by a factor of 1/100,000), respectively. Let the historical data about the
severity of each loss be recorded in the LossAmount variable of the Work.Losses data set. Let the data set
also contain two additional variables, Deductible and Limit, that record the deductible and ground-up loss
limit provisions, respectively, of the insurance policy that the policyholder has. The limit on ground-up loss
is usually derived from the payment limit that a typical insurance policy states. Deductible serves as the
left-truncation variable, and Limit serves as the right-censoring variable. The SAS statements that simulate an
example of the Work.Losses data set are available in the PROC HPSEVERITY sample program hsevex10.sas.

The variables CarType, Education, and Gender each contain a known, finite set of discrete values. By
specifying such variables as classification variables, you can separately identify the effect of each level of the
variable on the severity distribution. For example, you might be interested in finding out how the magnitude
of loss for a sport utility vehicle (SUV) differs from that for a sedan. This is an example of a main effect.
You might also want to evaluate how the distribution of losses that are incurred by a policyholder with a
college degree who drives a SUV differs from that of a policyholder with an advanced degree who drives
a sedan. This is an example of an interaction effect. You can include various such types of effects in the
scale regression model. For more information about the effect types, see the section “Specification and
Parameterization of Model Effects” on page 291. Analyzing such a rich set of regression effects can help
you make more accurate predictions about the losses that a new applicant with certain characteristics might
incur when he or she requests insurance for a specific vehicle, which can further help you with ratemaking
decisions.

The following PROC HPSEVERITY step fits the scale regression model with a lognormal distribution to data
in the Work.Losses data set, and stores the model and parameter estimate information in the Work.EstStore
item store:

/* Fit scale regression model with different types of regression effects */
proc hpseverity data=losses outstore=eststore

print=all plots=none;
loss lossAmount / lt=deductible rc=limit;
class carType gender education;
scalemodel carType gender carSafety income education*carType

income*gender carSafety*income;
dist logn;

run;
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The SCALEMODEL statement in the preceding PROC HPSEVERITY step includes two main effects
(carType and gender), two singleton continuous effects (carSafety and income), one interaction effect
(education*carType), one continuous-by-class effect (income*gender), and one polynomial continuous effect
(carSafety*income). For more information about effect types, see Table 9.9, “GLM Parameterization of
Classification Variables and Effects,” on page 294.

When you specify a CLASS statement, it is recommended that you observe the “Class Level Information”
table. For this example, the table is shown in Output 9.10.1. Note that if you specify BY-group processing,
then the class level information might change from one BY group to the next, potentially resulting in a
different parameterization for each BY group.

Output 9.10.1 Class Level Information Table

The HPSEVERITY ProcedureThe HPSEVERITY Procedure

Class Level Information

Class Levels Values

carType 2 SUV Sedan

gender 2 Female Male

education 3 AdvancedDegree College High School

The regression modeling results for the lognormal distribution are shown in Output 9.10.2. The “Initial
Parameter Values and Bounds” table is important especially because the preceding PROC HPSEVERITY
step uses the default GLM parameterization, which is a singular parameterization—that is, it results in some
redundant parameters. As shown in the table, the redundant parameters correspond to the last level of each
classification variable; this correspondence is a defining characteristic of a GLM parameterization. An
alternative would be to use the reference parameterization by specifying the PARAM=REFERENCE option
in the CLASS statement, which does not generate redundant parameters for effects that contain CLASS
variables and enables you to specify a reference level for each CLASS variable.

Output 9.10.2 Initial Values for the Scale Regression Model with Class and Interaction Effects

Initial Parameter Values and Bounds

Parameter
Initial
Value

Lower
Bound

Upper
Bound

Mu 4.88526 -709.78271 709.78271

Sigma 0.51283 1.05367E-8 Infty

carType SUV 0.56953 -709.78271 709.78271

carType Sedan Redundant

gender Female 0.41154 -709.78271 709.78271

gender Male Redundant

carSafety -0.72742 -709.78271 709.78271

income -0.33216 -709.78271 709.78271

carType*education SUV AdvancedDegree 0.31686 -709.78271 709.78271

carType*education SUV College 0.66361 -709.78271 709.78271

carType*education SUV High School Redundant

carType*education Sedan AdvancedDegree -0.47841 -709.78271 709.78271

carType*education Sedan College -0.25968 -709.78271 709.78271

carType*education Sedan High School Redundant

income*gender Female -0.02112 -709.78271 709.78271

income*gender Male Redundant

carSafety*income 0.13084 -709.78271 709.78271
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The convergence and optimization summary information in Output 9.10.3 indicates that the scale regression
model for the lognormal distribution has converged with the default optimization technique in five iterations.

Output 9.10.3 Optimization Summary for the Scale Regression Model with Class and Interaction Effects

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary

Optimization Technique Trust Region

Iterations 5

Function Calls 14

Log Likelihood -8286.8

The “Parameter Estimates” table in Output 9.10.4 shows the distribution parameter estimates and estimates
for various regression effects. You can use the estimates for effects that contain CLASS variables to infer the
relative influence of various CLASS variable levels. For example, on average, the magnitude of losses that
are incurred by the female drivers is exp.0:44145/ � 1:56 times greater than that of male drivers, and an
SUV driver with an advanced degree incurs a loss that is on average exp.0:39393/= exp.�0:35210/ � 2:11
times greater than the loss that a college-educated sedan driver incurs. Neither the continuous-by-class effect
income*gender nor the polynomial continuous effect carSafety*income is significant in this example.

Output 9.10.4 Parameter Estimates for the Scale Regression with Class and Interaction Effects

Parameter Estimates

Parameter Estimate
Standard

Error t Value
Approx
Pr > |t|

Mu 5.08874 0.05768 88.23 <.0001

Sigma 0.55774 0.01119 49.86 <.0001

carType SUV 0.62459 0.04452 14.03 <.0001

gender Female 0.44145 0.04885 9.04 <.0001

carSafety -0.82942 0.08371 -9.91 <.0001

income -0.35212 0.07657 -4.60 <.0001

carType*education SUV AdvancedDegree 0.39393 0.07351 5.36 <.0001

carType*education SUV College 0.76532 0.05723 13.37 <.0001

carType*education Sedan AdvancedDegree -0.61064 0.05387 -11.34 <.0001

carType*education Sedan College -0.35210 0.03942 -8.93 <.0001

income*gender Female -0.01486 0.06629 -0.22 0.8226

carSafety*income 0.07045 0.11447 0.62 0.5383

If you want to update the model when new claims data arrive, then you can potentially speed up the estimation
process by specifying the OUTSTORE= item store that is created by the preceding PROC HPSEVERITY
step as an INSTORE= item store in a new PROC HPSEVERITY step as follows:
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/* Refit scale regression model on new data different types of regression effects */
proc hpseverity data=withNewLosses instore=eststore print=all plots=all;

loss lossAmount / lt=deductible rc=limit;
class carType gender education;
scalemodel carType gender carSafety income education*carType

income*gender carSafety*income;
dist logn;

run;

PROC HPSEVERITY uses the parameter estimates in the INSTORE= item store to initialize the distribution
and regression parameters.
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ADJSAMPLEVAR= option
OUTPUT statement (HPCDM), 67

ADJUSTEDSEVERITY= option
PROC HPCDM statement, 60

ALL option
TEST statement (HPPANEL), 163
TEST statement (HPQLIM), 206

BAYES statement
HPQLIM procedure, 192

BETA
PRIOR statement (HPQLIM), 204

BOUNDS statement
HPCOUNTREG procedure, 133
HPQLIM procedure, 196

BY statement
HPCDM procedure, 65
HPCOUNTREG procedure, 133
HPQLIM procedure, 196
HPSEVERITY procedure, 255

CENSORED option
ENDOGENOUS statement (HPQLIM), 198, 201

CLASS statement
HPSEVERITY procedure, 256

COMMIT= option
PERFORMANCE statement (high-performance

analytical procedures), 36
COMMONPACKAGE option

OUTSCORELIB statement (HPSEVERITY), 264
CONDITIONAL

OUTPUT statement (HPQLIM), 203
COPYVAR= option

OUTPUT statement (HPCOUNTREG), 136
OUTPUT statement (HPPANEL), 162
OUTPUT statement (HPQLIM), 203

CORRB option
HPQLIM procedure, 189
MODEL statement, 135
PROC HPCOUNTREG statement, 130
PROC HPPANEL statement, 160

CORROUT option
PROC HPCOUNTREG statement, 130
PROC HPPANEL statement, 160
PROC HPQLIM statement, 188

COST option
ENDOGENOUS statement (HPQLIM), 199, 202

COUNT= option
EXTERNALCOUNTS statement (HPCDM), 66

COUNTSTORE= option
PROC HPCDM statement, 60

COVB option
HPQLIM procedure, 189
MODEL statement, 135
PROC HPCOUNTREG statement, 130
PROC HPPANEL statement, 160

COVEST= option
HPQLIM procedure, 189
PROC HPCOUNTREG statement, 130

COVOUT option
PROC HPCOUNTREG statement, 130
PROC HPPANEL statement, 160
PROC HPQLIM statement, 188
PROC HPSEVERITY statement, 247

CRITERION= option
PROC HPSEVERITY statement, 252

DATA= option
PROC HPCDM statement, 61
PROC HPCOUNTREG statement, 130
PROC HPPANEL statement, 160
PROC HPQLIM statement, 188
PROC HPSEVERITY statement, 247

DEFINE statement
HPCOPULA procedure, 111

DESCENDING option
CLASS statement (HPSEVERITY), 256

DETAILS option
PERFORMANCE statement (high-performance

analytical procedures), 37
PERFORMANCE statement (HPCOPULA), 113
PERFORMANCE statement (HPCOUNTREG),

136
PERFORMANCE statement (HPPANEL), 162
PERFORMANCE statement (HPQLIM), 204

DFMIXTURE= option
SCALEMODEL statement (HPSEVERITY), 266

DIAGNOSTICS= option
BAYES statement (HPQLIM), 192

DISCRETE option
ENDOGENOUS statement (HPQLIM), 197, 201

DIST statement
HPSEVERITY procedure, 258

DIST= option
HPCOUNTREG statement (HPCOUNTREG),

134
MODEL statement (HPCOUNTREG), 134
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DISTBY statement
HPCDM procedure, 65

DISTRIBUTION= option
ENDOGENOUS statement (HPQLIM), 197, 201

EDFALPHA= option
PROC HPSEVERITY statement, 247

EMPIRICALCDF= option
PROC HPSEVERITY statement, 253

ERRORCOMP= option
HPCOUNTREG statement (HPCOUNTREG),

134
MODEL statement (HPCOUNTREG), 134

ERRSTD
OUTPUT statement (HPQLIM), 203

EXPECTED
OUTPUT statement (HPQLIM), 203

EXTERNALCOUNTS statement
HPCDM procedure, 66

FIXONE option
MODEL statement (HPPANEL), 161

FIXONETIME option
MODEL statement (HPPANEL), 161

FIXTWO option
MODEL statement (HPPANEL), 161

FREQ statement
HPCOUNTREG procedure, 133

FRONTIER option
ENDOGENOUS statement (HPQLIM), 198, 202

GAMMA
PRIOR statement (HPQLIM), 204

GRIDHOST= option
PERFORMANCE statement (high-performance

analytical procedures), 37
GRIDMODE= option

PERFORMANCE statement (high-performance
analytical procedures), 37

GRIDTIMEOUT= option
PERFORMANCE statement (high-performance

analytical procedures), 37
GROUPID= option

PROC HPCOUNTREG statement, 130

high-performance analytical procedures,
PERFORMANCE statement, 36

COMMIT= option, 36
DETAILS option, 37
GRIDHOST= option, 37
GRIDMODE= option, 37
GRIDTIMEOUT= option, 37
HOST= option, 37
INSTALL= option, 37
INSTALLLOC= option, 37

LASR= option, 38
LASRSERVER= option, 38
MODE= option, 37
NNODES= option, 38
NODES= option, 38
NTHREADS= option, 39
THREADS= option, 39
TIMEOUT= option, 37

HOST= option
PERFORMANCE statement (high-performance

analytical procedures), 37
HPCDM procedure, 58

DISTBY statement, 65
EXTERNALCOUNTS statement, 66
OUTPUT statement, 66
OUTSUM statement, 67
PERFORMANCE statement, 70
SEVERITYMODEL statement, 70
syntax, 58

HPCDM procedure, EXTERNALCOUNTS statement
COUNT= option, 66
ID= option, 66

HPCDM procedure, OUTPUT statement
ADJSAMPLEVAR= option, 67
OUT= option, 66
PERTURBOUT option, 67
SAMPLEVAR= option, 67

HPCDM procedure, OUTSUM statement
OUT= option, 67
PCTLNAME= option, 69
PCTLNDEC= option, 70
PCTLPTS= option, 69

HPCDM procedure, PROC HPCDM statement, 60
ADJUSTEDSEVERITY= option, 60
COUNTSTORE= option, 60
DATA= option, 61
NOPRINT option, 61
NPERTURBEDSAMPLES= option, 61
NREPLICATES= option, 61
PCTLDEF= option, 62
PLOTS= option, 62
PRINT= option, 63
SEED= option, 64
SEVERITYEST= option, 64
VARDEF= option, 64

HPCOPULA procedure, 111
DEFINE statement, 111
PERFORMANCE statement, 113
PROC HPCOPULA statement, 111
SIMULATE statement, 112
syntax, 111
VAR Statement, 113

HPCOPULA procedure, PERFORMANCE statement,
113
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HPCOUNTREG procedure, 127
PERFORMANCE statement, 136
syntax, 127

HPCOUNTREG procedure, PERFORMANCE
statement, 136

HPCOUNTREG procedure, WEIGHT statement, 137
HPPANEL procedure, 158

PERFORMANCE statement, 162
syntax, 158

HPPANEL procedure, PERFORMANCE statement,
162

HPQLIM procedure, 185
PERFORMANCE statement, 204
PRIOR statement, 204
syntax, 185

HPQLIM procedure, FREQ statement, 199
HPQLIM procedure, PERFORMANCE statement, 204
HPQLIM procedure, TEST statement, 205
HPQLIM procedure, WEIGHT statement, 206
HPSEVERITY procedure, 244

CLASS statement, 256
DIST statement, 258
LOSS statement, 260
NLOPTIONS statement, 262
OUTSCORELIB statement, 263
PERFORMANCE statement, 265
SCALEMODEL statement, 265
syntax, 244
WEIGHT statement, 267

HPSEVERITY procedure, CLASS statement
DESCENDING option, 256
MISSING option, 257
ORDER= option, 256
PARAM= option, 258
REF= option, 257
TRUNCATE= option, 258

HPSEVERITY procedure, DIST statement
INIT= option, 259
LISTONLY option, 259
VALIDATEONLY option, 260

HPSEVERITY procedure, LOSS statement
LEFTCENSORED= option, 260
LEFTTRUNCATED= option, 261
PROBOBSERVED= option, 261
RIGHTCENSORED= option, 261
RIGHTTRUNCATED= option, 262

HPSEVERITY procedure, OUTSCORELIB statement
COMMONPACKAGE option, 264
OUTBYID= option, 264
OUTLIB= option, 263

HPSEVERITY procedure, PROC HPSEVERITY
statement, 247

COVOUT option, 247
CRITERION= option, 252

DATA= option, 247
EDF=AUTO option, 253
EDF=KAPLANMEIER option, 253
EDF=MODIFIEDKM option, 254
EDF=NOTURNBULL option, 254
EDF=STANDARD option, 254
EDF=TURNBULL option, 254
EMPIRICALCDF= option, 253
INEST= option, 247
INITSAMPLE option, 247
INSTORE= option, 248
NAMELEN= option, 248
NOCLPRINT option, 249
NOPRINT option, 249
OBJECTIVE= option, 255
OUTCDF= option, 249
OUTEST= option, 249
OUTMODELINFO= option, 249
OUTSTAT= option, 249
OUTSTORE= option, 249
PLOTS= option, 250
PRINT= option, 251
VARDEF= option, 252

HPSEVERITY procedure, SCALEMODEL statement
DFMIXTURE= option, 266
OFFSET= option, 267

ID statement
HPPANEL procedure, 160

ID= option
EXTERNALCOUNTS statement (HPCDM), 66

IGAMMA
PRIOR statement (HPQLIM), 204

INEST= option
PROC HPSEVERITY statement, 247

INIT statement
HPCOUNTREG procedure, 134
HPQLIM procedure, 200

INIT= option
DIST statement (HPSEVERITY), 259

INITSAMPLE option
PROC HPSEVERITY statement, 247

INSTALL= option
PERFORMANCE statement (high-performance

analytical procedures), 37
INSTALLLOC= option

PERFORMANCE statement (high-performance
analytical procedures), 37

INSTORE= option
PROC HPSEVERITY statement, 248

LASR= option
PERFORMANCE statement (high-performance

analytical procedures), 38
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LASRSERVER= option
PERFORMANCE statement (high-performance

analytical procedures), 38
LEFTCENSORED= option

LOSS statement (HPSEVERITY), 260
LEFTTRUNCATED= option

LOSS statement (HPSEVERITY), 261
LISTONLY option

DIST statement (HPSEVERITY), 259
LM option

TEST statement (HPPANEL), 163
TEST statement (HPQLIM), 206

LOSS statement
HPSEVERITY procedure, 260

LOWERBOUND= option
ENDOGENOUS statement (HPQLIM), 198, 201,

202
LR option

TEST statement (HPPANEL), 164
TEST statement (HPQLIM), 206

MARGINAL
OUTPUT statement (HPQLIM), 203

MAXTUNE= option
BAYES statement (HPQLIM), 194

METHOD= option
PROC HPCOUNTREG statement, 132
PROC HPQLIM statement, 191

MILLS
OUTPUT statement (HPQLIM), 203

MINTUNE= option
BAYES statement (HPQLIM), 193

MISSING option
CLASS statement (HPSEVERITY), 257

MODE= option
PERFORMANCE statement (high-performance

analytical procedures), 37
MODEL statement

HPCOUNTREG procedure, 134
HPPANEL procedure, 161
HPQLIM procedure, 200

NAMELEN= option
PROC HPSEVERITY statement, 248

NBI= option
BAYES statement (HPQLIM), 194

NLOPTIONS statement
HPSEVERITY procedure, 262

NMC= option
BAYES statement (HPQLIM), 194

NNODES= option
PERFORMANCE statement (high-performance

analytical procedures), 38
NOCLPRINT option

PROC HPSEVERITY statement, 249
NODES option

PERFOMRANCE statement (HPCOPULA), 113
PERFOMRANCE statement (HPPANEL), 162
PERFOMRANCE statement (HPQLIM), 204

NODES= option
PERFORMANCE statement (high-performance

analytical procedures), 38
PERFORMANCE statement (HPCOUNTREG),

136
NOINT option

MODEL statement (HPCOUNTREG), 135
MODEL statement (HPPANEL), 161
MODEL statement (HPQLIM), 200

NONORMALIZE option
WEIGHT statement (HPCOUNTREG), 137
WEIGHT statement (HPQLIM), 207

NOPRINT option
PROC HPCDM statement, 61
PROC HPCOUNTREG statement, 130, 135
PROC HPPANEL statement, 160
PROC HPQLIM statement, 188
PROC HPSEVERITY statement, 249

NORMAL
PRIOR statement (HPQLIM), 204

NPERTURBEDSAMPLES= option
PROC HPCDM statement, 61

NREPLICATES= option
PROC HPCDM statement, 61

NTHREADS option
PERFOMRANCE statement (HPCOPULA), 113
PERFOMRANCE statement (HPPANEL), 162
PERFOMRANCE statement (HPQLIM), 204

NTHREADS= option
PERFORMANCE statement (high-performance

analytical procedures), 39
PERFORMANCE statement (HPCOUNTREG),

136
NTU= option

BAYES statement (HPQLIM), 194

OBJECTIVE= option
PROC HPSEVERITY statement, 255

OFFSET= option
MODEL statement (HPCOUNTREG), 135
SCALEMODEL statement (HPSEVERITY), 267

ORDER= option
CLASS statement (HPSEVERITY), 256
ENDOGENOUS statement (HPQLIM), 197, 201

OUT= option
OUTPUT statement (HPCDM), 66
OUTPUT statement (HPCOUNTREG), 135
OUTPUT statement (HPPANEL), 162
OUTPUT statement (HPQLIM), 203
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OUTSUM statement (HPCDM), 67
OUTBYID= option

OUTSCORELIB statement (HPSEVERITY), 264
OUTCDF= option

PROC HPSEVERITY statement, 249
OUTCORR option

PROC HPPANEL statement, 160
OUTCOV option

PROC HPPANEL statement, 160
OUTEST= option

PROC HPCOUNTREG statement, 130
PROC HPPANEL statement, 160, 173
PROC HPQLIM statement, 188
PROC HPSEVERITY statement, 249

OUTLIB= option
OUTSCORELIB statement (HPSEVERITY), 263

OUTMODELINFO= option
PROC HPSEVERITY statement, 249

OUTPOST= option
BAYES statement (HPQLIM), 194

OUTPUT statement
HPCDM procedure, 66
HPCOUNTREG procedure, 135
HPPANEL procedure, 162
HPQLIM procedure, 202
PROC HPPANEL statement, 173

OUTSCORELIB statement
HPSEVERITY procedure, 263

OUTSTAT= option
PROC HPSEVERITY statement, 249

OUTSTORE= option
PROC HPSEVERITY statement, 249

OUTSUM statement
HPCDM procedure, 67

PARAM= option
CLASS statement (HPSEVERITY), 258

PCTLDEF= option
PROC HPCDM statement, 62

PCTLNAME= option
OUTSUM statement (HPCDM), 69

PCTLNDEC= option
OUTSUM statement (HPCDM), 70

PCTLPTS= option
OUTSUM statement (HPCDM), 69

PERFORMANCE statement
high-performance analytical procedures, 36
HPCDM procedure, 70
HPCOPULA procedure, 113
HPCOUNTREG procedure, 136
HPPANEL procedure, 162
HPQLIM procedure, 204
HPSEVERITY procedure, 265

PERTURBOUT option

OUTPUT statement (HPCDM), 67
PLOTS option

HPQLIM statement (HPQLIM), 191
PLOTS= option

PROC HPCDM statement, 62
PROC HPSEVERITY statement, 250

PRED= option
OUTPUT statement (HPCOUNTREG), 136

PREDICTED
OUTPUT statement (HPPANEL), 162
OUTPUT statement (HPQLIM), 203

PRINT= option
PROC HPCDM statement, 63
PROC HPSEVERITY statement, 251

PRINTALL option
MODEL statement, 135
PROC HPCOUNTREG statement, 130
PROC HPQLIM statement, 188

PRINTFIXED option
MODEL statement (HPPANEL), 161

PRIOR statement
HPQLIM procedure, 204

PROB
OUTPUT statement (HPQLIM), 203

PROB= option
OUTPUT statement (HPCOUNTREG), 136

PROBALL
OUTPUT statement (HPQLIM), 203

PROBCOUNT option
OUTPUT statement (HPCOUNTREG), 136

PROBOBSERVED= option
LOSS statement (HPSEVERITY), 261

PROBZERO= option
OUTPUT statement (HPCOUNTREG), 136

PROC HPCDM statement, 60, see HPCDM procedure
PROC HPCOPULA statement

HPCOPULA procedure, 111
PROC HPPANEL statement, 160
PROC HPSEVERITY statement, 247
PRODUCTION option

ENDOGENOUS statement (HPQLIM), 199, 202
PROPCOV= option

BAYES statement (HPQLIM), 194

RANONE option
MODEL statement (HPPANEL), 161

RANTWO option
MODEL statement (HPPANEL), 161

REF= option
CLASS statement (HPSEVERITY), 257

RESIDUAL
OUTPUT statement (HPPANEL), 162
OUTPUT statement (HPQLIM), 203

RESTRICT statement
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HPCOUNTREG procedure, 137
HPQLIM procedure, 205

RIGHTCENSORED= option
LOSS statement (HPSEVERITY), 261

RIGHTTRUNCATED= option
LOSS statement (HPSEVERITY), 262

SAMPLEVAR= option
OUTPUT statement (HPCDM), 67

SAMPLING= option
BAYES statement (HPQLIM), 194

SCALEMODEL statement
HPSEVERITY procedure, 265

SEED= option
BAYES statement (HPQLIM), 195
PROC HPCDM statement, 64

SEVERITYEST= option
PROC HPCDM statement, 64

SEVERITYMODEL statement
HPCDM procedure, 70

SIMULATE statement
HPCOPULA procedure, 112

STATISTICS option
BAYES statement (HPQLIM), 195

T
PRIOR statement (HPQLIM), 205

TE1
OUTPUT statement (HPQLIM), 203

TE2
OUTPUT statement (HPQLIM), 203

THIN= option
BAYES statement (HPQLIM), 196

THREADS= option
PERFORMANCE statement (high-performance

analytical procedures), 39
TIMEOUT= option

PERFORMANCE statement (high-performance
analytical procedures), 37

TRUNCATE= option
CLASS statement (HPSEVERITY), 258

TRUNCATED option
ENDOGENOUS statement (HPQLIM), 198, 202

UNIFORM
PRIOR statement (HPQLIM), 204

UPPERBOUND= option
ENDOGENOUS statement (HPQLIM), 198, 201,

202

VALIDATEONLY option
DIST statement (HPSEVERITY), 260

VAR Statement
HPCOPULA procedure, 113

VARDEF= option

PROC HPCDM statement, 64
PROC HPSEVERITY statement, 252

VCOMP= option
MODEL statement (HPPANEL), 161

WALD option
TEST statement (HPPANEL), 163
TEST statement (HPQLIM), 206

WEIGHT statement
HPSEVERITY procedure, 267

XBETA
OUTPUT statement (HPQLIM), 203

XBETA= option
OUTPUT statement (HPCOUNTREG), 136

ZEROMODEL statement
HPCOUNTREG procedure, 138

ZGAMMA= option
OUTPUT statement (HPCOUNTREG), 136
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